Optimal Control for Economic Development During the Pandemic
2024
https://doi.org/10.1109/ACCESS.2023.3337825Abstract
This research introduces a compartmental model designed to address the critical challenge of cost-effective pandemic modeling and analysis. The proposed framework extends the Susceptible, Exposed, Infectious, and Recovered (SEIR) model by incorporating environmental pathogen dynamics and a mortality factor within the compartmental model. To identify an optimal strategy for disease control, we formulate an optimization problem. To expedite the solution of this nonlinear optimization problem, we leverage Geometric Programming (GP), which is well-suited for handling convex optimization problems related to parameter control within the compartmental model. Additionally, we employ Particle Swarm Optimization (PSO) to explore potential solutions. Our simulation results underscore a key finding: the optimal disease control strategy is a dynamic function of time. This insight highlights the need to go beyond conventional tactics like managed isolation and quarantine, thereby improving our approach to pandemic management.
References (43)
- S. Jia, Y. Li, and T. Fang, ''System dynamics analysis of COVID-19 prevention and control strategies,'' Environ. Sci. Pollut. Res., vol. 29, no. 3, pp. 3944-3957, Jan. 2022.
- D. Rotman, ''Stop COVID or save the economy? We can do both,'' MIT Technol. Rev., vol. 11, no. 9, pp. 44-53, 2020.
- A. Brodeur, D. M. Gray, A. Islam, and S. Bhuiyan, ''A literature review of the economics of COVID-19,'' SSRN Electron. J., vol. 35, no. 4, pp. 1007-1044, 2021.
- A. Di Crosta, I. Ceccato, D. Marchetti, P. La Malva, R. Maiella, L. Cannito, M. Cipi, N. Mammarella, R. Palumbo, M. C. Verrocchio, R. Palumbo, and A. Di Domenico, ''Psychological factors and consumer behavior during the COVID-19 pandemic,'' PLoS ONE, vol. 16, no. 8, pp. 1-23, Aug. 2021.
- T. Péni and G. Szederkényi, ''Convex output feedback model predictive control for mitigation of COVID-19 pandemic,'' Annu. Rev. Control, vol. 52, pp. 543-553, Jan. 2021.
- D. Beshnova, Y. Fang, M. Du, Y. Sun, F. Du, J. Ye, Z. J. Chen, and B. Li, ''Computational approach for binding prediction of SARS-CoV-2 with neutralizing antibodies,'' Comput. Structural Biotechnol. J., vol. 20, pp. 2212-2222, May 2022.
- Z.-H. Shen, Y.-M. Chu, M. A. Khan, S. Muhammad, O. A. Al-Hartomy, and M. Higazy, ''Mathematical modeling and optimal control of the COVID-19 dynamics,'' Results Phys., vol. 31, Dec. 2021, Art. no. 105028.
- M. Kamrujjaman, P. Saha, M. S. Islam, and U. Ghosh, ''Dynamics of SEIR model: A case study of COVID-19 in Italy,'' Results Control Optim., vol. 7, Jun. 2022, Art. no. 100119.
- A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R. M. Eggo, F. Sun, M. Jit, and J. D. Munday, ''Early dynamics of transmission and control of COVID-19: A mathematical modelling study,'' Lancet Infectious Diseases, vol. 20, pp. 553-558, May 2020.
- J. R. Koo, A. R. Cook, M. Park, Y. Sun, H. Sun, J. T. Lim, C. Tam, and B. L. Dickens, ''Interventions to mitigate early spread of SARS-CoV-2 in Singapore: A modelling study,'' Lancet Infectious Diseases, vol. 20, no. 6, pp. 678-688, Jun. 2020.
- S. P. Gatyeni, C. W. Chukwu, F. Chirove, Fatmawati, and F. Nyabadza, ''Application of optimal control to the dynamics of COVID-19 disease in South Africa,'' Sci. Afr., vol. 16, Jul. 2022, Art. no. e01268.
- G. B. Libotte, F. S. Lobato, G. M. Platt, and A. J. S. Neto, ''Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment,'' Comput. Methods Programs Biomed., vol. 196, Nov. 2020, Art. no. 105664.
- O. R. Jasim and Q. N. Nauef, ''Modelling COVID-19 data using double geometric stochastic process,'' Int. J. Nonlinear Anal. Appl., vol. 12, no. 2, pp. 1243-1254, 2021.
- A. Arnon, J. Ricco, and K. Smetters, ''Epidemiological and economic effects of lockdown,'' Brookings Papers Econ. Activity, vol. 2020, no. 3, pp. 61-108, 2020.
- H. Inoue, Y. Murase, and Y. Todo, ''Do economic effects of the anti-COVID-19 lockdowns in different regions interact through supply chains?'' PLoS ONE, vol. 16, no. 7, Jul. 2021, Art. no. e0255031.
- A. Glover, J. Heathcote, D. Krueger, and J.-V. Ríos-Rull, ''Health versus wealth: On the distributional effects of controlling a pandemic,'' J. Monetary Econ., vol. 140, pp. 34-59, Nov. 2023.
- U. Goldsztejn, D. Schwartzman, and A. Nehorai, ''Public policy and economic dynamics of COVID-19 spread: A mathematical modeling study,'' PLoS ONE, vol. 15, no. 12, Dec. 2020, Art. no. e0244174.
- R. Rowthorn and J. Maciejowski, ''A cost-benefit analysis of the COVID-19 disease,'' Oxford Rev. Econ. Policy, vol. 36, pp. S38-S55, Aug. 2020.
- M. Navascués, C. Budroni, and Y. Guryanova, ''Disease control as an optimization problem,'' PLoS ONE, vol. 16, no. 9, Sep. 2021, Art. no. e0257958.
- A. K. Srivastav, M. Ghosh, and S. R. Bandekar, ''Modeling of COVID-19 with limited public health resources: A comparative study of three most affected countries,'' Eur. Phys. J. Plus, vol. 136, no. 4, p. 359, Apr. 2021.
- I. M. Hezam, ''COVID-19 and Chikungunya: An optimal control model with consideration of social and environmental factors,'' J. Ambient Intell. Humanized Comput., vol. 7, pp. 1-18, Apr. 2022.
- R. Zreiq, S. Kamel, S. Boubaker, A. A. Al-Shammary, F. D. Algahtani, and F. Alshammari, ''Generalized Richards model for predicting COVID-19 dynamics in Saudi Arabia based on particle swarm optimization algorithm,'' AIMS Public Health, vol. 7, no. 4, pp. 828-843, 2020.
- M. Matabuena, P. Rodríguez-Mier, C. García-Meixide, and V. Leborán, ''COVID-19: Estimation of the transmission dynamics in Spain using a stochastic simulator and black-box optimization techniques,'' Comput. Methods Programs Biomed., vol. 211, Nov. 2021, Art. no. 106399.
- S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
- M. Hayhoe, F. Barreras, and V. M. Preciado, ''Multitask learning and nonlinear optimal control of the COVID-19 outbreak: A geometric programming approach,'' Annu. Rev. Control, vol. 52, pp. 495-507, Jan. 2021.
- F. Brauer, ''Compartmental models in epidemiology,'' in Mathematical Epidemiology. Berlin, Germany: Springer, 2008, pp. 19-79.
- M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals. Princeton, NJ, USA: Princeton Univ. Press, 2011, pp. 190-231.
- W. O. Kermack and A. G. McKendrick, ''A contribution to the mathematical theory of epidemics,'' Proc. Roy. Soc. london A, Containing Papers Math. Phys. Character, vol. 115, pp. 700-721, Aug. 1927.
- H. W. Hethcote, ''Three basic epidemiological models,'' in Applied Mathematical Ecology. Berlin, Germany: Springer, 1989, pp. 119-144.
- R. Schlickeiser and M. Kröger, ''Analytical modeling of the temporal evolution of epidemics outbreaks accounting for vaccinations,'' Physics, vol. 3, no. 2, pp. 386-426, May 2021.
- S. Mwalili, M. Kimathi, V. Ojiambo, D. Gathungu, and R. Mbogo, ''SEIR model for COVID-19 dynamics incorporating the environment and social distancing,'' BMC Res. Notes, vol. 13, no. 1, pp. 1-5, Dec. 2020.
- E. Goldman, ''Exaggerated risk of transmission of COVID-19 by fomites,'' Lancet Infectious Diseases, vol. 20, no. 8, pp. 892-893, Aug. 2020.
- A. Meiksin, ''Dynamics of COVID-19 transmission including indirect transmission mechanisms: A mathematical analysis,'' Epidemiol. Infec- tion, vol. 148, p. e257, Oct. 2020.
- N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, J. O. Lloyd-Smith, E. de Wit, and V. J. Munster, ''Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1,'' New England J. Med., vol. 382, no. 16, pp. 1564-1567, Apr. 2020.
- D. E. Harbourt, A. D. Haddow, A. E. Piper, H. Bloomfield, B. J. Kearney, D. Fetterer, K. Gibson, and T. Minogue, ''Modeling the stability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on skin, currency, and clothing,'' PLOS Neglected Tropical Diseases, vol. 14, no. 11, Nov. 2020, Art. no. e0008831.
- J. I. Stoker, H. Garretsen, and J. Lammers, ''Leading and working from home in times of COVID-19: On the perceived changes in leadership behaviors,'' J. Leadership Organizational Stud., vol. 29, no. 2, pp. 208-218, May 2022.
- S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, ''A tutorial on geometric programming,'' Optim. Eng., vol. 8, no. 1, pp. 67-127, Mar. 2007.
- D. Wang, D. Tan, and L. Liu, ''Particle swarm optimization algorithm: An overview,'' Soft Comput., vol. 22, no. 2, pp. 387-408, Jan. 2018.
- H. Rahmandad, T. Y. Lim, and J. Sterman, ''Behavioral dynamics of COVID-19: Estimating underreporting, multiple waves, and adherence fatigue across 92 nations,'' Syst. Dyn. Rev., vol. 37, no. 1, pp. 5-31, Jan. 2021.
- Q. Li et al., ''Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia,'' New England J. Med., vol. 382, pp. 1199-1207, Mar. 2020.
- S. Bentout, A. Chekroun, and T. Kuniya, ''Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria,'' AIMS Public Health, vol. 7, no. 2, pp. 306-318, 2020.
- H. C. Stankiewicz Karita et al., ''Trajectory of viral RNA load among persons with incident SARS-CoV-2 G614 infection (Wuhan strain) in association with COVID-19 symptom onset and severity,'' JAMA Netw. Open, vol. 5, no. 1, Jan. 2022, Art. no. e2142796.
- G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, and M. Colaneri, ''Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy,'' Nature Med., vol. 26, no. 6, pp. 855-860, Jun. 2020.