Academia.eduAcademia.edu

Outline

Shadow of rotating charged black hole with Weyl corrections

2019, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1906.04146

Abstract

We construct theoretical investigation of the black hole shadow for rotating charged black hole in an asymptotically flat, axisymmetric, and stationary spacetime with Weyl corrections. This spacetime is characterized by mass (M ), charge parameter (q), rotation parameter (a), and Weyl coupling constant (α). We derive photon geodesics around the black hole and compute expressions for impact parameters with the help of photon spherical orbits conditions. We show how the presence of coupling constant α affects the shapes of black hole shadow from the usual Kerr-Newman black hole. A comparison with the standard Kerr and Kerr-Newman black hole is also include to observe the potential deviation from them. We find that the radius of black hole shadow decreases and the distortion in the shape of shadow increases with an increase in charge q for both positive and negative values of coupling constant α. We further extend our study by considering the plasma environment around the black hole and find out the essential expressions for the black hole shadow.

References (53)

  1. B. P. Abbott et al. [LIGO Scientific and Virgo Collabo- rations], Phys. Rev. Lett. 116, 061102 (2016).
  2. M. Schmidt, Nature 197, 1040 (1963).
  3. M. J. Rees, Ann. Rev. Astron. Astrophys. 22, 471 (1984).
  4. J. Kormendy and D. Richstone, Ann. Rev. Astron. As- trophys. 33, 581 (1995).
  5. A. Eckart and R. Genzel, Nature 383, 415 (1996).
  6. A. E. Broderick, R. Narayan, J. Kormendy, E. S. Perl- man, M. J. Rieke and S. S. Doeleman, Astrophys. J. 805, 179 (2015).
  7. J. M. Bardeen, Black holes, in Proceeding of the Les Houches Summer School, Session 215239, edited by C. De Witt and B.S. De Witt and B.S. De Witt (Gordon and Breach, New York, 1973).
  8. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, New York, 1992).
  9. S. Doeleman et al., Nature 455, 78 (2008)
  10. S. Doeleman, E. Agol, D. Backer et al., Astro2010: The Astronomy and Astrophysics Decadal Survey, Science White Papers, no. 68.
  11. A. E. Broderick, A. Loeb and R. Narayan, Astrophys. J. 701, 1357 (2009).
  12. C. Goddi et al., Int. J. Mod. Phys. D 26, 1730001 (2016).
  13. K. Akiyama et al. [Event Horizon Telescope Collabora- tion], Astrophys. J. 875, L1 (2019).
  14. K. Akiyama et al. [Event Horizon Telescope Collabora- tion], Astrophys. J. 875, L5 (2019).
  15. K. Akiyama et al. [Event Horizon Telescope Collabora- tion], Astrophys. J. 875, L6 (2019).
  16. K. Hioki and K.-i. Maeda, Phys. Rev. D 80, 024042 (2009).
  17. A. A. Abdujabbarov, L. Rezzolla and B. J. Ahmedov, Mon. Not. Roy. Astron. Soc. 454, 2423 (2015).
  18. Z. Younsi, A. Zhidenko, L. Rezzolla, R. Konoplya and Y. Mizuno, Phys. Rev. D 94, 084025 (2016).
  19. R. Takahashi, Publ. Astron. Soc. Jap. 57, 273 (2005).
  20. C. Bambi and K. Freese, Phys. Rev. D 79, 043002 (2009).
  21. S. W. Wei and Y. X. Liu, J. Cosmol. Astropart. Phys. 11 (2013) 063.
  22. C. Bambi and N. Yoshida, Class. Quant. Grav. 27, 205006 (2010).
  23. L. Amarilla, E. F. Eiroa and G. Giribet, Phys. Rev. D 81, 124045 (2010).
  24. L. Amarilla and E. F. Eiroa, Phys. Rev. D 85, 064019 (2012).
  25. A. Yumoto, D. Nitta, T. Chiba and N. Sugiyama, Phys. Rev. D 86, 103001 (2012).
  26. L. Amarilla and E. F. Eiroa, Phys. Rev. D 87, 044057 (2013).
  27. A. Abdujabbarov, F. Atamurotov, Y. Kucukakca, B. Ahmedov, and U. Camci, Astrophys. Space Sci. 344, 429 (2013).
  28. F. Atamurotov, A. Abdujabbarov and B. Ahmedov, Phys. Rev. D 88, 064004 (2013).
  29. A. Grenzebach, V. Perlick and C. Lammerzahl, Phys. Rev. D 89, no. 12, 124004 (2014).
  30. Z. Li and C. Bambi, J. Cosmol. Astropart. Phys. 01 (2014) 041.
  31. P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, and H. F. Runarsson, Phys. Rev. Lett. 115, 211102 (2015).
  32. T. Johannsen, Astrophys. J. 777, 170 (2013).
  33. F. Atamurotov and B. Ahmedov, Phys. Rev. D 92, 084005 (2015).
  34. A. Abdujabbarov, M. Amir, B. Ahmedov, and S. G. Ghosh, Phys. Rev. D 93, 104004 (2016).
  35. M. Amir and S. G. Ghosh, Phys. Rev. D 94, 024054 (2016).
  36. R. Kumar, B. P. Singh, M. S. Ali, and S. G. Ghosh, arXiv:1712.09793.
  37. U. Papnoi, F. Atamurotov, S. G. Ghosh, and B. Ahme- dov, Phys. Rev. D 90, 024073 (2014).
  38. M. Amir, B. P. Singh and S. G. Ghosh, Eur. Phys. J. C 78, 399 (2018).
  39. B. P. Singh and S.G. Ghosh, Annals Phys. 395, 127 (2018).
  40. P. G. Nedkova, V. K. Tinchev, and S. S. Yazadjiev, Phys. Rev. D 88, 124019 (2013).
  41. T. Ohgami and N. Sakai, Phys. Rev. D 91, 124020 (2015).
  42. A. Abdujabbarov, B. Juraev, B. Ahmedov and Z. Stuchlík, Astrophys. Space Sci. 361, 226 (2016).
  43. R. Shaikh, Phys. Rev. D 98, 024044 (2018).
  44. M. Amir, A. Banerjee and S. D. Maharaj, Ann. Phys. 400, 198 (2019).
  45. M. Amir, K. Jusufi, A. Banerjee and S. Hansraj, arXiv:1806.07782.
  46. S. Chen and J. Jing, Phys. Rev. D 89, 104014 (2014).
  47. O. Preuss, M. P. Haugan, S. K. Solanki and S. Jordan, Phys. Rev. D 70, 067101 (2004).
  48. S. K. Solanki et al., Phys. Rev. D 69, 062001 (2004).
  49. A. Ritz and J. Ward, Phys. Rev. D 79, 066003 (2009).
  50. J. P. Wu, Y. Cao, X. M. Kuang and W. J. Li, Phys. Lett. B 697, 153 (2011).
  51. D. Z. Ma, Y. Cao and J. P. Wu, Phys. Lett. B 704, 604 (2011).
  52. D. Roychowdhury, Phys. Rev. D 86, 106009 (2012).
  53. J. L. Synge, Relativity: The General Theory, (North- Holland, Amsterdam, 1960).