Academia.eduAcademia.edu

Outline

A comprehensive review of wireless body area network

2019, Journal of Network and Computer Applications

https://doi.org/10.1016/J.JNCA.2019.06.016

Abstract

Recent development and advancement of information and communication technologies facilitate people in different dimensions of life. Most importantly, in the healthcare industry, this has become more and more involved with the information and communication technology-based services. One of the most important services is monitoring of remote patients, that enables the healthcare providers to observe, diagnose and prescribe the patients without being physically present. The advantage of miniaturization of sensor technologies gives the flexibility of installing in, on or off the body of patients, which is capable of forwarding physiological data wirelessly to remote servers. Such technology is named as Wireless Body Area Network (WBAN). In this paper, WBAN architecture, communication technologies for WBAN, challenges and different aspects of WBAN are illustrated. This paper also describes the architectural limitations of existing WBAN communication frameworks. blueFurthermore, implementation requirements are presented based on IEEE 802.15.6 standard. Finally, as a source of motivation towards future development of research incorporating Software Defined Networking (SDN), Energy Harvesting (EH) and Blockchain technology into WBAN are also provided.

References (161)

  1. A. Bouazizi, G. Zaibi, M. Samet, A. Kachouri, Wireless body area network for e-health applica- tions: Overview, in: 2017 International Conference on Smart, Monitored and Controlled Cities (SM2C), IEEE, 2017, pp. 64-68.
  2. D. S. Gangwar, Biomedical sensor network for cardiovascular fitness and activity monitoring, in: 2013 IEEE Point-of-Care Healthcare Technologies (PHT), IEEE, 2013, pp. 279-282.
  3. S. V. B. Peddi, A. Yassine, S. Shirmohammadi, Cloud based virtualization for a calorie measure- ment e-health mobile application, in: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), IEEE, 2015, pp. 1-6.
  4. H.-y.
  5. Zhou, K.-m. Hou, Pervasive cardiac monitoring system for remote continuous heart care, in: 2010 4th International Conference on Bioinformatics and Biomedical Engineering, IEEE, 2010, pp. 1-4.
  6. S. H. Shin, R. Kamal, R. Haw, S. I. Moon, C. S. Hong, M. J. Choi, Intelligent m2m network using healthcare sensors, in: 2012 14th Asia-PacificNetwork Operations and Management Symposium (APNOMS), IEEE, 2012, pp. 1-4.
  7. B. Wire, Research and Markets: Machine-to-Machine (M2M) Communication in Health- care 2010-20: Reviews the Major Drivers and Barriers for Growth of M2M, [Available On- line]: https://www.businesswire.com/news/home/20110526005774/en/research-markets -machine-to-machine-m2m-communication-healthcare-2010-20, [Accessed on: 2019-03-20].
  8. V. Patil, S. S. Thakur, V. Kshirsagar, Health monitoring system using internet of things, in: 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, 2018, pp. 1523-1525.
  9. P. Van Daele, I. Moerman, P. Demeester, Wireless body area networks: status and opportunities, in: 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 2014, pp. 1-4.
  10. A. Darwish, A. E. Hassanien, Wearable and implantable wireless sensor network solutions for healthcare monitoring, Sensors 11 (6) (2011) 5561-5595.
  11. M. Ghamari, B. Janko, R. S. Sherratt, W. Harwin, R. Piechockic, C. Soltanpur, A survey on wireless body area networks for ehealthcare systems in residential environments, Sensors 16 (6) (2016) 831.
  12. T. Hayajneh, G. Almashaqbeh, S. Ullah, A. V. Vasilakos, A survey of wireless technologies coex- istence in wban: analysis and open research issues, Wireless Networks 20 (8) (2014) 2165-2199.
  13. D. P. Tobón, T. H. Falk, M. Maier, Context awareness in wbans: a survey on medical and non- medical applications, IEEE Wireless Communications 20 (4) (2013) 30-37.
  14. R. A. Khan, A.-S. K. Pathan, The state-of-the-art wireless body area sensor networks: A survey, International Journal of Distributed Sensor Networks 14 (4) (2018) 1-23.
  15. S. Al-Janabi, I. Al-Shourbaji, M. Shojafar, S. Shamshirband, Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications, Egyptian Informatics Journal 18 (2) (2017) 113-122.
  16. M. M. Alam, E. B. Hamida, Surveying wearable human assistive technology for life and safety critical applications: Standards, challenges and opportunities, Sensors 14 (5) (2014) 9153-9209.
  17. R. Cavallari, F. Martelli, R. Rosini, C. Buratti, R. Verdone, A survey on wireless body area networks: Technologies and design challenges, IEEE Communications Surveys & Tutorials 16 (3) (2014) 1635-1657.
  18. S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, A. Jamalipour, Wireless body area networks: A survey, IEEE Communications Surveys & Tutorials 16 (3) (2014) 1658-1686.
  19. R. Negra, I. Jemili, A. Belghith, Wireless body area networks: Applications and technologies, Procedia Computer Science 83 (2016) 1274-1281.
  20. B. Antonescu, S. Basagni, Wireless body area networks: challenges, trends and emerging technolo- gies, in: Proceedings of the 8th international conference on body area networks, ICST (Institute for Computer Sciences, Social-Informatics and . . . , 2013, pp. 1-7.
  21. S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, I. Moerman, S. Saleem, Z. Rahman, K. S. Kwak, A comprehensive survey of wireless body area networks, Journal of medical systems 36 (3) (2012) 1065-1094.
  22. D. Chandramouli, B. Covell, V. Held, H. Hietalahti, J. Hofmann, R. Ratasuk, Massive machine type communication and the internet of things, 5G for the Connected World (2019) 377-439.
  23. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT
  24. E. Kartsakli, A. S. Lalos, A. Antonopoulos, S. Tennina, M. D. Renzo, L. Alonso, C. Verikoukis, A survey on m2m systems for mhealth: a wireless communications perspective, Sensors 14 (10) (2014) 18009-18052.
  25. T. ETSI, 102 690, machine-to-machine communications (m2m), functional architecture, European Telecommunications Standards Institute (ETSI) 20 (2011) 332.
  26. A. Drescher, A survey of software-defined wireless networks, Dept. Comput. Sci. Eng., Washington Univ. St. Louis, St. Louis, MO, USA, Tech. Rep (2014) 1-15.
  27. NEC, Software-Defined Networking (SDN) Solution Nagoa City University Hospital, [Available Online]: http://au.nec.com/en au/media/docs/case-studies/nec-sdn-case-study-nagoyai-city- university-hospital.pdf, [Accessed on: 2019-01-09].
  28. L. Hu, M. Qiu, J. Song, M. S. Hossain, A. Ghoneim, Software defined healthcare networks, IEEE Wireless Communications 22 (6) (2015) 67-75.
  29. G. Cova, H. Xiong, Q. Gao, E. Guerrero, R. Ricardo, J. Estevez, A perspective of state-of-the-art wireless technologies for e-health applications, in: 2009 IEEE International Symposium on IT in Medicine & Education, Vol. 1, IEEE, 2009, pp. 76-81.
  30. T. Bhardwaj, S. C. Sharma, Cloud-wban: An experimental framework for cloud-enabled wireless body area network with efficient virtual resource utilization, Sustainable Computing: Informatics and Systems 20 (2018) 14-33.
  31. G. B. Satrya, N. D. Cahyani, R. F. Andreta, The detection of 8 type malware botnet using hybrid malware analysis in executable file windows operating systems, in: Proceedings of the 17th International Conference on Electronic Commerce 2015, ACM, 2015, p. 5.
  32. G. B. Satrya, S. Y. Shin, Optimizing rule on open source firewall using content and pcre combi- nation, Journal of Advances in Computer Networks 3 (3) (2015) 308-314.
  33. M. Al Shayokh, A. Abeshu, G. Satrya, M. Nugroho, Efficient and secure data delivery in soft- ware defined wban for virtual hospital, in: 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), IEEE, 2016, pp. 12-16.
  34. IEEE Standards Coordinating Committee, IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3khz to 300ghz, IEEE C95. 1-1991.
  35. S. N. Ramli, R. Ahmad, Surveying the wireless body area network in the realm of wireless com- munication, in: 2011 7th International Conference on Information Assurance and Security (IAS), IEEE, 2011, pp. 58-61.
  36. B. Gyselinckx, R. Borzi, P. Mattelaer, Human++: Emerging technology for body area networks, in: Wireless Technologies, CRC Press, 2007, pp. 227-246.
  37. D. Lewis, 802.15. 6 call for applications in body area networks response summary, 15-08-0407- 05-0006.
  38. N. de Vicq, F. Robert, J. Penders, B. Gyselinckx, T. Torfs, Wireless body area network for sleep staging, in: 2007 IEEE Biomedical Circuits and Systems Conference, IEEE, 2007, pp. 163-166.
  39. H.-T. Chu, C.-C. Huang, Z.-H. Lian, J. J. Tsai, A ubiquitous warning system for asthma- inducement, in: IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC'06), Vol. 2, IEEE, 2006, pp. 186-191.
  40. World Health Organization, Global report on diabetes, [Available On- line]: http://www.who.int/news-room/fact-sheets/detail/diabetes, [Accessed on: 2019-03- 29].
  41. Diabetes Australia, Diabetes in Australia, [Available On- line]: https://www.diabetesaustralia.com.au/diabetes-in-australia, [Accessed on: 2019-04-02].
  42. World Health Organization, Global cancer rates could increase by 50% to 15 million by 2020, [Available Online]: http://www.who.int/mediacentre/news/releases/2003/pr27/en/, [Ac- cessed on: 2019-02-02].
  43. A. K. Teshome, B. Kibret, D. T. Lai, A review of implant communication technology in wban: Progress and challenges, IEEE reviews in biomedical engineering 12 (2019) 88-99.
  44. J. Habetha, The myheart project-fighting cardiovascular diseases by prevention and early diagnosis, in: Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE, IEEE, 2006, pp. 6746-6749.
  45. J. Luprano, J. Sola, S. Dasen, J. M. Koller, O. Chetelat, Combination of body sensor networks and on-body signal processing algorithms: the practical case of myheart project, in: International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06), 2006, pp. 79-82.
  46. T. Tanaka, T. Fujita, K. Sonoda, M. Nii, K. Kanda, K. Maenaka, A. C. C. Kit, S. Okochi, K. Higuchi, Wearable health monitoring system by using fuzzy logic heart-rate extraction, in: World Automation Congress 2012, IEEE, 2012, pp. 1-4.
  47. S. Khan, A.-S. K. Pathan, N. A. Alrajeh, Wireless sensor networks: Current status and future trends, CRC press, Boca Ratun, FL, 2012.
  48. S. Kannan, Wheats: a wearable personal healthcare and emergency alert and tracking system, Eur. J. Sci. Res 1 (2012) 382-393.
  49. İ. Kirbaş, C. Bayilmiş, Healthface: A web-based remote monitoring interface for medical healthcare systems based on a wireless body area sensor network, Turkish Journal of Electrical Engineering & Computer Sciences 20 (4) (2012) 629-638.
  50. M. Zhang, A. Sawchuk, A customizable framework of body area sensor network for rehabilitation, in: International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2009, pp. 1-6.
  51. A. Hadjidj, M. Souil, A. Bouabdallah, Y. Challal, H. Owen, Wireless sensor networks for rehabili- tation applications: Challenges and opportunities, Journal of Network and Computer Applications 36 (1) (2013) 1-15.
  52. S. Bouwstra, W. Chen, L. Feijs, S. B. Oetomo, Smart jacket design for neonatal monitoring with wearable sensors, in: 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, IEEE, 2009, pp. 162-167.
  53. A. Basak, S. Narasimhan, S. Bhunia, Kims: Kids' health monitoring system at day-care cen- ters using wearable sensors and vocabulary-based acoustic signal processing, in: 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services, IEEE, 2011, pp. 1-8.
  54. A. Guraliuc, A. Serra, P. Nepa, G. Manara, F. Potorti, Detection and classification of human arm movements for physical rehabilitation, in: 2010 IEEE Antennas and Propagation Society International Symposium, IEEE, 2010, pp. 1-4.
  55. A. Chhikara, A. Rice, A. H. McGregor, F. Bello, Wearable device for monitoring disability asso- ciated with low back pain, World 10 (2008) 13.
  56. P. Iso-Ketola, T. Karinsalo, J. Vanhala, Hipguard: A wearable measurement system for patients recovering from a hip operation, in: 2008 Second International Conference on Pervasive Computing Technologies for Healthcare, IEEE, 2008, pp. 196-199.
  57. T. Watanabe, H. Saito, Tests of wireless wearable sensor system in joint angle measurement of lower limbs, in: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2011, pp. 5469-5472.
  58. G. Anania, A. Tognetti, N. Carbonaro, M. Tesconi, F. Cutolo, G. Zupone, D. De Rossi, Develop- ment of a novel algorithm for human fall detection using wearable sensors, in: SENSORS, 2008 IEEE, IEEE, 2008, pp. 1336-1339.
  59. F. Felisberto, F. Fdez-Riverola, A. Pereira, A ubiquitous and low-cost solution for movement monitoring and accident detection based on sensor fusion, Sensors 14 (5) (2014) 8961-8983.
  60. S. Yazaki, T. Matsunaga, A proposal of abnormal condition detection system for elderly people using wireless wearable biosensor, in: 2008 SICE Annual Conference, IEEE, 2008, pp. 2234-2238.
  61. S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. H. Growdon, M. Welsh, P. Bonato, Analysis of feature space for monitoring persons with parkinson's disease with application to a wireless wearable sensor system, in: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2007, pp. 6290-6293.
  62. T. Falck, J. Espina, J. . Ebert, D. Dietterle, Basuma -the sixth sense for chronically ill patients, in: International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06), 2006, pp. 60-63.
  63. K. Wac, R. Bults, B. van Beijnum, I. Widya, V. Jones, D. Konstantas, M. Vollenbroek-Hutten, H. Hermens, Mobile patient monitoring: The mobihealth system, in: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 1238-1241.
  64. T. Gao, T. Massey, L. Selavo, D. Crawford, B.-r. Chen, K. Lorincz, V. Shnayder, L. Hauenstein, F. Dabiri, J. Jeng, et al., The advanced health and disaster aid network: A light-weight wireless medical system for triage, IEEE Transactions on biomedical circuits and systems 1 (3) (2007) 203-216.
  65. E. Kang, Y. Im, U. Kim, Remote control multi-agent system for u-healthcare service, in: KES International Symposium on Agent and Multi-Agent Systems: Technologies and Applications, Springer, 2007, pp. 636-644.
  66. V. Shnayder, B.-r. Chen, K. Lorincz, T. R. F. F. Jones, M. Welsh, Sensor networks for medical care, in: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, SenSys '05, 2005, pp. 314-314.
  67. K. Ouchi, T. Suzuki, M. Doi, Lifeminder: a wearable healthcare support system using user's context, in: Proceedings 22nd International Conference on Distributed Computing Systems Work- shops, 2002, pp. 791-792.
  68. T. Sheltami, A. Mahmoud, M. Abu-Amara, Warning and monitoring medical system using sensor networks, in: The Saudi 18th national computer conference (NCC18), 2006, pp. 63-68.
  69. K. Venkatasubramanian, G. Deng, T. Mukherjee, J. Quintero, V. Annamalai, S. K. Gupta, Ayush- man: A wireless sensor network based health monitoring infrastructure and testbed, in: Proceed- ings of the First IEEE international conference on Distributed Computing in Sensor Systems, Springer-Verlag, 2005, pp. 406-407.
  70. D. Curtis, E. Shih, J. Waterman, J. Guttag, J. Bailey, T. Stair, R. A. Greenes, L. Ohno-Machado, Physiological signal monitoring in the waiting areas of an emergency room, in: Proceedings of the ICST 3rd international conference on Body area networks, ICST, 2008, p. 5.
  71. E. L. van den Broek, J. H. D. M. Westerink, Biofeedback systems for stress reduction -towards a bright future for a revitalized field, in: HEALTHINF, 2012.
  72. A. D. Wood, J. A. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu, L. Fang, R. Stoleru, Context-aware wireless sensor networks for assisted living and residential monitoring, IEEE Network 22 (4) (2008) 26-33.
  73. H. Ghasemzadeh, V. Loseu, E. Guenterberg, R. Jafari, Sport training using body sensor networks: A statistical approach to measure wrist rotation for golf swing, in: Proceedings of the Fourth International Conference on Body Area Networks, ICST, 2009, p. 2.
  74. V. Sivaraman, S. Grover, A. Kurusingal, A. Dhamdhere, A. Burdett, Experimental study of mo- bility in the soccer field with application to real-time athlete monitoring, in: 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), IEEE, 2010, pp. 337-345.
  75. S. Akram, N. Javaid, A. Tauqir, A. Rao, S. N. Mohammad, The-fame: Threshold based energy- efficient fatigue measurement for wireless body area sensor networks using multiple sinks, in: 2013 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA), IEEE, 2013, pp. 214-220.
  76. M. Garcia, A. Catalá, J. Lloret, J. J. Rodrigues, A wireless sensor network for soccer team moni- toring, in: 2011 International Conference on Distributed Computing in Sensor Systems and Work- shops (DCOSS), IEEE, 2011, pp. 1-6.
  77. M. Lauzier, P. Ferrand, H. Parvery, A. Fraboulet, J.-M. Gorce, Wbans for live sport monitoring: an experimental approach, early results and perspectives, in: EURO-COST IC1004-European Cooperation in the Filed Of Scientific and Technical Research, 2012.
  78. K. Revett, S. T. de Magalhães, Cognitive biometrics: Challenges for the future, in: International Conference on Global Security, Safety, and Sustainability, Springer, 2010, pp. 79-86.
  79. S. Coyle, D. Morris, K. Lau, D. Diamond, N. Taccini, D. Costanzo, P. Salvo, F. Di Francesco, M. G. Trivella, J. Porchet, J. Luprano, Textile sensors to measure sweat ph and sweat-rate during exer- cise, in: 2009 3rd International Conference on Pervasive Computing Technologies for Healthcare, 2009, pp. 1-6.
  80. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT
  81. D. Morris, B. Schazmann, Y. Wu, S. Coyle, S. Brady, J. Hayes, C. Slater, C. Fay, K. T. Lau, G. Wallace, D. Diamond, Wearable sensors for monitoring sports performance and training, in: 2008 5th International Summer School and Symposium on Medical Devices and Biosensors, 2008, pp. 121-124.
  82. L. De Nardis, D. Domenicali, M. G. Di Benedetto, Mobility model for body area networks of soccer players, in: The 3rd European Wireless Technology Conference, 2010, pp. 65-68.
  83. M. Lapinski, E. Berkson, T. Gill, M. Reinold, J. A. Paradiso, A distributed wearable, wireless sensor system for evaluating professional baseball pitchers and batters, in: 2009 International Symposium on Wearable Computers, 2009, pp. 131-138.
  84. M. Walsh, J. Barton, B. O'Flynn, C. O'Mathuna, M. Tyndyk, Capturing the overarm throw in darts employing wireless inertial measurement, in: SENSORS, 2011 IEEE, 2011, pp. 1441-1444.
  85. R. Marin-Perianu, M. Marin-Perianu, D. Rouffet, S. Taylor, P. Havinga, R. Begg, M. Palaniswami, Body area wireless sensor networks for the analysis of cycling performance, in: Proceedings of the Fifth International Conference on Body Area Networks, ACM, 2010, pp. 1-7.
  86. G. Magenes, D. Curone, L. Caldani, E. L. Secco, Fire fighters and rescuers monitoring through wearable sensors: The proetex project, in: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010, pp. 3594-3597.
  87. H. B. Lim, D. Ma, B. Wang, Z. Kalbarczyk, R. K. Iyer, K. L. Watkin, A soldier health monitoring system for military applications, in: 2010 International Conference on Body Sensor Networks (BSN), IEEE, 2010, pp. 246-249.
  88. D. Chen, J. Hart, R. Vertegaal, Towards a physiological model of user interruptability, in: IFIP Conference on Human-Computer Interaction, Springer, 2007, pp. 439-451.
  89. T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey, J. M. Boyle, A systematic literature review of empirical evidence on computer games and serious games, Computers & Education 59 (2) (2012) 661-686.
  90. O. Omeni, A. C. W. Wong, A. J. Burdett, C. Toumazou, Energy efficient medium access protocol for wireless medical body area sensor networks, IEEE Transactions on biomedical circuits and systems 2 (4) (2008) 251-259.
  91. M. Al Ameen, J. Liu, S. Ullah, K. S. Kwak, A power efficient mac protocol for implant device communication in wireless body area networks, in: 2011 IEEE Consumer Communications and Networking Conference (CCNC), IEEE, 2011, pp. 1155-1160.
  92. T. O'Donovan, J. O'Donoghue, C. Sreenan, D. Sammon, P. O'Reilly, K. A. O'Connor, A con- text aware wireless body area network (ban), in: 2009 3rd International Conference on Pervasive Computing Technologies for Healthcare, 2009, pp. 1-8.
  93. G. Pradhan, R. Gupta, S. Biswasz, Study and simulation of wban mac protocols for emergency data traffic in healthcare, in: 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), IEEE, 2018, pp. 1-4.
  94. S. Marinkovic, C. Spagnol, E. Popovici, Energy-efficient tdma-based mac protocol for wireless body area networks, in: 2009 Third International Conference on Sensor Technologies and Applications, IEEE, 2009, pp. 604-609.
  95. B. Braem, B. Latre¿, I. Moerman, C. Blondia, E. Reusens, W. Joseph, L. Martens, P. Demeester, The need for cooperation and relaying in short-range high path loss sensor networks, in: 2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007), 2007, pp. 566-571.
  96. S. Ullah, B. Shen, S. Riazul Islam, P. Khan, S. Saleem, K. Sup Kwak, A study of mac protocols for wbans, Sensors 10 (1) (2009) 128-145.
  97. X. Zhou, T. Zhang, L. Song, Q. Zhang, Energy efficiency optimization by resource allocation in wireless body area networks, in: 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), IEEE, 2014, pp. 1-6.
  98. G. Fang, E. Dutkiewicz, Bodymac: Energy efficient tdma-based mac protocol for wireless body area networks, in: 2009 9th International Symposium on Communications and Information Technology, 2009, pp. 1455-1459.
  99. W. Scanlon, G. Conway, S. Cotton, Antennas and propagation considerations for robust wireless communications in medical body area networks, in: IET Seminar on Antennas and Propagation for Body-Centric Wireless Communications, Vol. 11803, 2007.
  100. M. Patel, J. Wang, Applications, challenges, and prospective in emerging body area networking technologies, IEEE Wireless Communications 17 (1) (2010) 80-88.
  101. A. Kiourti, K. S. Nikita, A review of implantable patch antennas for biomedical telemetry: Chal- lenges and solutions [wireless corner], IEEE Antennas and Propagation Magazine 54 (3) (2012) 210-228.
  102. G.-Z. Yang, G. Yang, Body Sensor Networks, Springer-Verlag, London, 2006.
  103. G. Selimis, L. Huang, F. Massé, I. Tsekoura, M. Ashouei, F. Catthoor, J. Huisken, J. Stuyt, G. Dolmans, J. Penders, et al., A lightweight security scheme for wireless body area networks: design, energy evaluation and proposed microprocessor design, Journal of medical systems 35 (5) (2011) 1289-1298.
  104. C. C. Poon, Y.-T. Zhang, S.-D. Bao, A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health, IEEE Communications Magazine 44 (4) (2006) 73-81.
  105. D. He, C. Chen, S. Chan, J. Bu, A. V. Vasilakos, A distributed trust evaluation model and its application scenarios for medical sensor networks, IEEE Transactions on Information Technology in Biomedicine 16 (6) (2012) 1164-1175.
  106. D. He, C. Chen, S. Chan, J. Bu, A. V. Vasilakos, Retrust: Attack-resistant and lightweight trust management for medical sensor networks, IEEE transactions on information technology in biomedicine 16 (4) (2012) 623-632.
  107. C. A. Chin, G. V. Crosby, T. Ghosh, R. Murimi, Advances and challenges of wireless body area networks for healthcare applications, in: 2012 International Conference on Computing, Networking and Communications (ICNC), IEEE, 2012, pp. 99-103.
  108. N. Wisniewski, M. Reichert, Methods for reducing biosensor membrane biofouling, Colloids and Surfaces B: Biointerfaces 18 (3-4) (2000) 197-219.
  109. S. Ullah, K. S. Kwak, Throughput and delay limits of ieee 802.15. 6, in: Wireless Communications and Networking Conference (WCNC), IEEE, 2011, pp. 174-178.
  110. N. Xiong, A. V. Vasilakos, L. T. Yang, L. Song, Y. Pan, R. Kannan, Y. Li, Comparative analysis of quality of service and memory usage for adaptive failure detectors in healthcare systems, IEEE Journal on Selected Areas in Communications 27 (4) (2009) 495-509.
  111. G. Zhou, J. Lu, C. . Wan, M. D. Yarvis, J. A. Stankovic, Bodyqos: Adaptive and radio-agnostic qos for body sensor networks, in: IEEE INFOCOM 2008 -The 27th Conference on Computer Communications, 2008, pp. 565-573.
  112. I. S. Association, et al., Ieee standard for local and metropolitan area networks-part 15.6: Wireless body area networks, IEEE Standard for Information Technology, IEEE 802 (6) (2012) 1-271.
  113. D. Domenicali, M. Di Benedetto, Performance analysis for a body area network composed of ieee 802.15.4a devices, in: 2007 4th Workshop on Positioning, Navigation and Communication, 2007, pp. 273-276.
  114. D. Domenicali, L. De Nardis, M. Di Benedetto, Uwb body area network coexistence by interference mitigation, in: 2009 IEEE International Conference on Ultra-Wideband, 2009, pp. 713-717.
  115. J.-H. Hauer, V. Handziski, A. Wolisz, Experimental study of the impact of wlan interference on ieee 802.15. 4 body area networks, in: European Conference on Wireless Sensor Networks, Springer, 2009, pp. 17-32.
  116. J. Hou, B. Chang, D.-K. Cho, M. Gerla, Minimizing 802.11 interference on zigbee medical sensors, in: Proceedings of the Fourth International Conference on Body Area Networks, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2009, p. 5.
  117. F. Martelli, R. Verdone, Coexistence issues for wireless body area networks at 2.45 ghz, in: Euro- pean Wireless 2012; 18th European Wireless Conference 2012, 2012, pp. 1-6.
  118. S. Warren, E. Jovanov, The need for rules of engagement applied to wireless body area networks, in: Proceedings of the IEEE consumer communications and networking conference, CCNC, 2006.
  119. R. Chávez-Santiago, C. Garcia-Pardo, A. Fornes-Leal, A. Vallés-Lluch, G. Vermeeren, W. Joseph, I. Balasingham, N. Cardona, Experimental path loss models for in-body communications within 2.36-2.5 ghz., IEEE J. Biomedical and Health Informatics 19 (3) (2015) 930-937.
  120. T. Aoyagi, K. Takizawa, T. Kobayashi, J.-i. Takada, R. Kohno, Development of a wban channel model for capsule endoscopy, in: IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2009, pp. 1-4.
  121. Y. Liu, R. D. Gitlin, A phenomenological path loss model of the in vivo wireless channel, in: IEEE 16th Wireless and Microwave Technology Conference, 2015.
  122. D. Kurup, W. Joseph, G. Vermeeren, L. Martens, In-body path loss model for homogeneous human tissues, IEEE Transactions on Electromagnetic Compatibility 54 (3) (2012) 556-564.
  123. D. Kurup, G. Vermeeren, E. Tanghe, W. Joseph, L. Martens, In-to-out body antenna-independent path loss model for multilayered tissues and heterogeneous medium, Sensors 15 (1) (2014) 408-421.
  124. D. Takahashi, Y. Xiao, F. Hu, Ltrt: Least total-route temperature routing for embedded biomed- ical sensor networks, in: IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference, IEEE, 2007, pp. 641-645.
  125. A. Bag, M. A. Bassiouni, Hotspot preventing routing algorithm for delay-sensitive applications of in vivo biomedical sensor networks, Information Fusion 9 (3) (2008) 389-398.
  126. F. T. Zuhra, K. A. Bakar, A. Ahmed, M. A. Tunio, Routing protocols in wireless body sensor networks: A comprehensive survey, Journal of Network and Computer Applications 99 (2017) 73-97.
  127. K. Awan, K. N. Qureshi, M. Mehwish, Wireless body area networks routing protocols: a review, Indonesian Journal of Electrical Engineering and Computer Science 4.
  128. Q. Tang, N. Tummala, S. K. Gupta, L. Schwiebert, Tara: thermal-aware routing algorithm for implanted sensor networks, in: International Conference on Distributed Computing in Sensor Systems, Springer, 2005, pp. 206-217.
  129. A. Bag, M. A. Bassiouni, Energy efficient thermal aware routing algorithms for embedded biomed- ical sensor networks, in: 2006 IEEE International Conference on Mobile Ad Hoc and Sensor Systems, IEEE, 2006, pp. 604-609.
  130. C. Oey, S. Moh, A survey on temperature-aware routing protocols in wireless body sensor networks, Sensors 13 (8) (2013) 9860-9877.
  131. R. Istepanian, S. Laxminarayan, C. S. Pattichis, M-health, Springer, Boston, MA, 2006.
  132. H. Cao, V. Leung, C. Chow, H. Chan, Enabling technologies for wireless body area networks: A survey and outlook, IEEE Communications Magazine 47 (12).
  133. F. Touati, R. Tabish, U-healthcare system: State-of-the-art review and challenges, Journal of medical systems 37 (3) (2013) 9949.
  134. M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, V. C. Leung, Body area networks: A survey, Mobile networks and applications 16 (2) (2011) 171-193.
  135. H. C. Keong, M. R. Yuce, Analysis of a multi-access scheme and asynchronous transmit-only uwb for wireless body area networks, in: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 6906-6909.
  136. K. S. Kwak, S. Ullah, N. Ullah, An overview of ieee 802.15. 6 standard, in: Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2010 3rd International Symposium on, IEEE, 2010, pp. 1-6.
  137. D. B. Smith, D. Miniutti, T. A. Lamahewa, L. W. Hanlen, Propagation models for body-area networks: A survey and new outlook, IEEE Antennas and Propagation Magazine 55 (5) (2013) 97-117.
  138. Federal Communications Commission , Cell Phones and Specific Absorption Rate, [Available On- line]: https://www.fcc.gov/general/cell-phones-and-specific-absorption-rate, [Accessed on: 2018- 11-09].
  139. J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley, H. L. Owen, Advancing software- defined networks: A survey, IEEE Access 5 (2017) 25487-25526.
  140. A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal, J. Halpern, Forwarding and Control Element Separation (ForCES) Protocol Specification, RFC 5810, Tech. rep. (2010).
  141. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, Openflow: enabling innovation in campus networks, ACM SIGCOMM Computer Com- munication Review 38 (2) (2008) 69-74.
  142. M. Casado, N. Foster, A. Guha, Abstractions for software-defined networks, Communications of the ACM 57 (10) (2014) 86-95.
  143. H. I. Kobo, A. M. Abu-Mahfouz, G. P. Hancke, A survey on software-defined wireless sensor networks: Challenges and design requirements., IEEE Access 5 (1) (2017) 1872-1899.
  144. HITInfrastructure, Benefits of Software-Defined Networking in Healthcare, [Available Online]: https://hitinfrastructure.com/features/benefits-of-software-defined-networking-in- healthcare, [Accessed on: 2019-01-09].
  145. V. Varadharajan, U. Tupakula, K. Karmakar, Secure monitoring of patients with wandering be- havior in hospital environments, IEEE Access 6 (2018) 11523-11533.
  146. B. T. De Oliveira, L. B. Gabriel, C. B. Margi, Tinysdn: Enabling multiple controllers for software- defined wireless sensor networks, IEEE Latin America Transactions 13 (11) (2015) 3690-3696.
  147. Y. Choi, Y. Choi, Y.-G. Hong, Study on coupling of software-defined networking and wireless sensor networks, in: International Conference on Ubiquitous and Future Networks, 2016, pp. 900- 902.
  148. K. Hasan, X.-W. Wu, K. Biswas, K. Ahmed, A novel framework for software defined wireless body area network, in: Intelligent Systems, Modelling and Simulations (ISMS), 2018 8th International Conference on, IEEE, 2018, pp. 114-119.
  149. S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Tech. rep. (2008).
  150. D. E. Kouicem, A. Bouabdallah, H. Lakhlef, Internet of things security: A top-down survey, Computer Networks 141 (2018) 199 -221.
  151. M. Mettler, Blockchain technology in healthcare: The revolution starts here, in: 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), IEEE, 2016, pp. 1-3.
  152. G. Prisco, The Blockchain for healthcare: Gem launches Gem Health Network with Philips Blockchain Lab, [Available Online]: https://bitcoinmagazine.com/articles/the-blockchain-for- heathcare-gem-launches-gem-health-network-with-philips-blockchain-lab-1461674938/, [Accessed on: 2018-11-09].
  153. S. Huh, S. Cho, S. Kim, Managing iot devices using blockchain platform, in: 2017 19th Interna- tional Conference on Advanced Communication Technology (ICACT), IEEE, 2017, pp. 464-467.
  154. O. Williams-Grut, Estonia is using the technology behind bitcoin to secure 1 mil- lion health records, [Available Online]: https://www.businessinsider.com.au/guardtime-estonian- health-records-industrial-blockchain-bitcoin-2016-3?r=us&ir=t, [Accessed on: 2018-11-09].
  155. P. Nichol, Blockchain applications for healthcare, Najdeno 4 (9) (2016) 2017.
  156. S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, J. He, Blochie: a blockchain-based platform for healthcare information exchange, in: 2018 IEEE International Conference on Smart Computing (SMARTCOMP), IEEE, 2018, pp. 49-56.
  157. K. Hasan, K. Biswas, K. Ahmed, M. S. Islam, Challenges of integrating blockchain in wireless body area network, The 3rd Symposium on Distributed Ledger Technology, 2018 Griffith University, Australia.
  158. F. Akhtar, M. H. Rehmani, Energy harvesting for self-sustainable wireless body area networks, IT Professional 19 (2) (2017) 32-40.
  159. C. Gould, R. Edwards, Review on micro-energy harvesting technologies, in: 2016 51st International Universities Power Engineering Conference (UPEC), IEEE, 2016, pp. 1-5.
  160. M. Saida, G. Zaibi, M. Samet, A. Kachouri, Improvement of energy harvested from the heat of the human body, in: 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), IEEE, 2016, pp. 132-137.
  161. S. Akbari, Energy harvesting for wireless sensor networks review, in: 2014 Federated Conference on Computer Science and Information Systems, IEEE, 2014, pp. 987-992. References Challenges Heterogeneous Devices and Traffic Energy Efficiency Environmental Challenges Security, Authentication, and Privacy Bio-Compatibility QoS Interference and Coexistence Wireless Propagation Characteristics [90, 91] [92] [94, 96, 97] [95] [98] [17, 99, 100] [99, 101] [20, 104, 105, 106] [103] [107, 108] [109, 110, 111] [112, 113, 114, 115, 116, 117] [102] [119, 120, 121, 122,