Space-time coded cooperation in WirelessNetworks
2014
Abstract
Nowadays, the concept of spatial diversity and cooperative networks attract a lot of interest because they improve the reliability of transmission in wireless networks. Spatial diversity is achieved when multiple antennas are at the transmitter. With great growth and demand for high speed high data rate wireless communication, more and more antennas are required. In order to achieve maximum diversity, these antennas should be well separated so that the fading on each link is uncorrelated. This condition makes it difficult to have more than two antennas on a mobile terminal. The relay's cooperation helps increase the diversity order without extra hardware cost. However, its main inconvenience is the use of multiple time slots compared to the direct link transmission. In this thesis, we develop a cooperation model which is composed of three terminals: source, relay and destination. The transmitters (source and relay) are composed of 2 antennas at the transmitter and the receivers (relay and destination) have 4 antennas. In the first proposed model, transmitters and decoders are composed of an Alamouti encoder and decoder respectively. In the second model, we also add a turbo encoder at transmitters and iterative decoding takes place at receivers. In both cases, the transmission cycle is composed of two time slots and the decode and forward (DF) protocol is applied. Multiple scenarios are considered by changing the environment of the CHAPTER 5: CONCLUSION AND FUTURE WORK .
References (81)
- LOS Environment ................................................................................... viii 3.3.1.2 NLOS Environment.................................................................................
- 3.2 Case 2: Performance in function of the position of the relay .....................
- 3.2.1 LOS Environment ...................................................................................
- 3.2.2 NLOS Environment.................................................................................
- Uplink Environment....................................................................................
- Downlink Environment ...............................................................................
- 4 Summary ........................................................................................................... CHAPTER 4: TURBO CODED SPACE-TIME COOPERATION ..................................................
- 1 System model ....................................................................................................
- 1.1 Phase 1 ........................................................................................................
- 1.2 Phase 2 ........................................................................................................
- 1.3 Decoding at destination...............................................................................
- 2 Power allocations ..............................................................................................
- 3 Space-time coded cooperation with Turbo-code ..............................................
- 3.1 Case 1: Relay at equal distance between source and destination ................
- 3.1.1 LOS Environment ...................................................................................
- 3.1.2 NLOS Environment.................................................................................
- 3.2 Case 2: Performance in function of the position of the relay .....................
- 3.2.1 LOS Environment ...................................................................................
- 3.2.2 NLOS Environment.................................................................................
- Uplink Environment....................................................................................
- Downlink Environment .............................................................................
- 4 Comparison of space-time code and Turbo coded space-time cooperation ... ix
- 4.1 Case 1: Relay at equal distance between source and destination ..............
- 4.1.1 LOS Environment .................................................................................
- 4.1.2 NLOS Environment...............................................................................
- 4.2 Uplink Environment..................................................................................
- 4.3 Downlink Environment .............................................................................
- 5 Summary ......................................................................................................... References
- G.J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas." Bell Labs Tech. J., 1996, Issue 2, Vol. 1, pp. 41-59.
- J. N. Laneman, D. N. C. Tse, G. W. Wornell., "Cooperative diversity in wireless networks: efficient protocols and outage behavior." in IEEE Transactions on information Theory, December 2004, Issue 12, Vol. 50, pp. 3062-3080.
- J. N. Laneman, G. W. Wornell., "Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks." in IEEE Transactions on information Theory, October 2003, Issue 10, Vol. 49, pp. 2415-2525.
- T. E. Hunter, A. Nosratinia., "Performance analysis of coded cooperation diversity." 2003. International Conference on Communications ICC03. Vol. 4, pp. 2688-2692.
- W.C. Jakes, "New Techniques for Mobile Radio." Bell Laboratory Record, December 1970, pp. 326-330.
- T.M. Duman, A. Ghrayeb., Coding for MIMO communication Systems, UK : John Wiley & Sons, 2007
- T. Zhou, H. Sharif, M. Hempel, P. Mahasukhon, W. Wang, T. Ma, "A Deterministic Approach to Evaluate Path Loss Exponents in Large-Scale Outdoor 802.11 WLANs", IEEE Conference on Local Computer Networks (LCN 2009) Zürich, Switzerland; 20-23 October 2009
- T.S. Rappaport, ''Wireless Communications Principles and practice'', Prentice Hall, 2002.
- Hai-ying Shang, Yu Han, Ji-hua Lu., "Statistical analysis of Rician and Nakagami-m fading channel using Multipath Shape Factors", 2nd International Conference on Computational Intelligence and Natural Computing Proceedings (CINC), Beijing, China, vol.1, pp.398-401, 2010
- C. E. Shannon, ''A mathematical theory of communication'', Bell System Technical Journal, vol. 27, pp. 379-423 and 623-656, July and October, 1948.
- M. K. Simon and M.-S. Alouini, Digital communication over fading channels, 2nd ed., New York: John Wiley & Sons, 2005.
- A. F. Naguib and R. Calderbank, "Space-time coding and signal processing for high data rate wireless communications", IEEE Signal Processing Magazine, vol. 17, no. 3, pp. 76-92, Mar. 2000.
- Z. Liu, G. B. Giannakis, S. Zhuo and B. Muquet, "Space-time coding for broadband wireless communications", Wireless Communications and Mobile Computing, vol. 1,no. 1, pp. 35-53, Jan. 2001.
- G. J. Foschini and M. J. Gans, ''On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas" Wireless Personal Communications, vol. 6, pp. 311-335, 1998.
- E. Telatar, "Capacity of multi-antenna Gaussian Channels." European Transaction on Telecommunications, Issue 6, Vol. 10, pp. 585-595, December 1999.
- D. Tse and P. Viswanath, ''Fundamentals of Wireless Communications'', Cambridge, 2006
- L. Zheng, D.N.C. Tse., "Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels.", in IEEE Transactions on information Theory, May 2003, Issue 5, Vol. 49, pp. 1073-1096.
- V. Tarokh, N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless communication: performance analysis and code construction,", in IEEE Transactions on information Theory, pp. 744-765, Mar. 1998.
- S. M. Alamouti, "A Simple Transmit Diversity Technique for Wireless Communications." IEEE Journal on Selected Areas in Communications, October 1998, Issue 8, Vol. 16, pp. 1451-1458.
- V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block codes for high data rate wireless communications: performance results,", in IEEE Journal on Selected Areas Communications, vol. 17, pp. 451-460, Mar. 1999.
- J.N. Laneman, Cooperative diversity in wireless networks: algorithms and architectures, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2002
- S. Mallick, P.Kaligineedi, M.M.Rashid, and V.K.Bhargava, "Radio resource optimization in cooperative wireless communication networks," in Cooperative Cellular Wireless Networks. Cambridge University Press, 2001
- L.B. Le, S.A. Vorobyov, K. Phan, and T.L. Ngoc, "Resource allocation and QoS provisioning for wireless relay networks," in Quality-of-Service Architectures for Wireless Networks: Performance Metrics and Management. IGI Global, 2009
- E.C. Van der Meulen, "Three-terminal communication channels," Advances in Applied Probability, vol. 3, pp. 120-154, 1971
- T. M. Cover and A. A. El Gamal, "Capacity theorems for the relay channel," in IEEE Transactions on information Theory, vol. 25, no. 5, pp. 572 -584, Sept. 1979.
- T. Cover and J.A. Thomas, Elements of Information Theory, UK:John Wiley&Sons, 2006
- A. Sendonaris, E. Erkip, and B. Aazhang, ''User Cooperation Diversity Part I and Part II" IEEE Transactions on Communications, vol. 51, no. 11, pp. 1927-48, November 2003.
- M. Dohler, Virtual antenna arrays, Ph.D. dissertation, King's College London, London, UK
- A. Host-Madsen and J. Zhang, "Capacity bounds and power allocation for wireless relay channels," IEEE Transactions on information Theory, vol. 51, no. 6, pp. 2020- 2040, Jun, 2006.
- R. Nabar, H. Bölcskei, and F. Kneubuhler, "Fading relay channels: Performance limits and space-time signal design," in IEEE Journal on Selected Areas in Communications, vol. 22, no. 6, pp. 1099-1109, Aug. 2004
- H. Ochiai, P. Mitran, and V. Tarokh, "Variable-rate two-phase collaborative communications protocols for wireless networks," IEEE Transactions on information Theory, vol. 52, no. 9, pp. 4299-4312, Sept. 2006.
- C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shanon limit error correcting coding and decoding: Turbo codes," in IEEE Proceedings of the International Conference on Communications, Geneva, 1993.
- C. Berrou and A. Glavieux, "Near optimum error correcting coding and decoding: Turbo codes," IEEE Transactions on Communications, vol. 44, no. 10, pp. 1261-1271, October 1996.
- R. Pyndiah, P. Combelles and P. Adde, "A very low complexity block turbo decoder for product codes," in IEEE Global Telecommunications Conf., 1996. GLOBECOM '96., 1996.
- P. Ferry, c. Adde and G. Graton, "Turbo decoder synchronization procedure: application to the CAS5093 integrated circuit," in Proceedings of the Third IEEE Int. Conf. on Electronics, Circuits and Systems, 1996. ICECS '96., 1996.
- C. Berrou, Practical considerations on turbo-codes, KPN Research, La haye, 1996.
- M. Valenti, "Turbo codes and iterative processing," in IEEE New Zealand Wireless Communications Symposium, Auckland, 1998.
- C. Berrou, S. Evano and G. Battail, "Turbo block codes," in Turbo coding seminar, Sweden, 1996.
- P. Adde, R. Pyndiah and O. Raoul, "Performance and complexity of block turbo decoder circuit," in 3rd Int. Conf. on Electronics, Circuits and System, 1996. ICECS '96., Rodos, 1996.
- M. Jezequel, C. Berrou, C. Douillard and P. Penard, "Characteristics of a sixteen- state turbo encoder/decoder (turbo4)," in Int. Symp. on Turbo codes and Related Topics, Brest, 1997.
- C. Berrou, M. Jezequel and C. Douillard, "Multidimensional Turbo codes," in Information Theory and Networking Workshop, Metsovo, 1999.
- C. Berrou and M. Jezequel, "Non-binary convolutional codes for turbo coding," Electronics letters, vol. 35, no. 1, pp. 39-40, January 1999.
- K. Sripimanwat, Turbo code applications, a journey from a paper to realization, Dordrecht: Springer, 2005.
- S. Benedetto and G. Montorsi, "Unveiling turbo codes: Some results on parallel concatenated coding schemes," IEEE Transactions on information Theory, vol. 42, no. 2, pp.409-429, Mar. 1996.
- S. Benedetto and G. Montorsi, "Design of parallel concatenated convolutional codes," IEEE Transactions on Communications, vol. 44, no. 5, pp. 591-600, May 1996.
- G. D. Forney, "The Viterbi algorithm," Proceedings of the IEEE, vol. 61, no. 3, pp. 268-278, March 1973.
- L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate," IEEE Trans. Inf. Theory, vol. 20, no. 2, pp. 284-287, March 1974.
- M. R. Soleymani, Y. Gao and U. Vilaipornsawai, Turbo coding for satellite and wireless communications, MA: Kluwer Academic Publishers, 2002.
- P. Robertson, P. Hoeher and E. Villebrun, "Optimal and Sub-Optimal Maximum A Posteriori Algorithms Suitable for Turbo Decoding," European Transactions on Telecommunications, vol. 8, pp. 119-125, April 1997.
- G. Ganesan and P. Stoica (May 2001). "Space-time block codes: A maximum SNR approach". IEEE Transactions on Information Theory, vol.47 pp. 1650-1656, May 2001
- L.L. Hanzo, T. H. Liew, B. L. Yeap, R. Y. S. Tee, S.X Ng, Turbo Coding, Turbo Equalisation and Space-Time Coding: EXIT-Chart-Aided Near-Capacity Designs for Wireless Channels, UK: Wiley-IEEE Press, 2002
- A. Abdaoui, S. S. Ikki, M. H. Ahmed, and E. Chatelet, "On the performance analysis of a MIMO-relaying scheme with space-time block codes," IEEE Transactions Vehicular Technology, vol. 59, no. 7, pp. 3604-3609, Sep. 2010.
- B. Vucetic, J. Yuan, Space-Time Coding, UK : John Wiley & Sons, 2003