Electronic properties of WTe2 and MoTe2 single crystals
2019, Journal of Physics: Conference Series
https://doi.org/10.1088/1742-6596/1389/1/012149Abstract
WTe2 and MoTe2 single crystals were grown, and their electrical resistivity in the temperature range from 80 K to 300 K, optical properties at room temperature in the spectral range of 0.17-5.0 eV were studied as well as theoretical calculations of the electronic structure were performed. It is shown that the temperature dependence of the electrical resistivity of orthorhombic WTe2 has a metallic type with resistivity value of (0.5-1) mOhmcm, while hexagonal MoTe2 has a semiconductor one and resistivity value (0.5-1) Ohmcm, which is three orders of magnitude larger than the resistivity of WTe2. Optical properties indicated that there is no contribution from free carriers in the entire spectral range studied. The calculated densities of the electronic states of MoTe2 and WTe2 showed the presence of a bunch of the molybdenum and tungsten electronic states in a wide energy interval with strong admixing of tellurium states. In the WTe2 compound, the larger number of the electronic state...
References (26)
- Chernozatonskii L A and Artukh A A 2018 Phys. Usp. 61 2
- Ali M N et al 2014 Nature 514 205
- Jolie W, Knispel T, Ehlen N, Nikonov K, Busse C, Grüneis A and Michely T 2019 Phys. Rev. B 99 115417
- Qi Y et al 2016 Nat. Commun. 7 10038
- Qian X F, Liu J W, Fu L and Li J 2014 Science 346 1344
- Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
- Huang L et al 2016 Nat. Mater. 15 1155
- Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 056805
- Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud'ko S L, Canfield P C and Kaminski A 2016 Phys. Rev. B 94 121113
- Deng K et al 2016 Nat. Phys. 12 1105
- Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z-M, Yang S A, Zhu Z, Alshareef H N and Zhang X X 2017 Nat. Commun. 8 2150
- Lv Y-Y et al 2017 Sci. Rep. 7 44587
- Xu S-Y et al 2015 Science 349 613
- Xu S-Y et al 2015 Nat. Phys. 11 748
- Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
- Yan B and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337
- Oliver S M et al 2017 2D Mater. 4 045008
- Kim H-J, Kang S-H, Hamada I and Son Y-W 2017 Phys. Rev. B 95 180101
- Lee C-H, Cruz-Silva E, Calderin L, Nguyen M A T, Hollander M J, Bersch B, Mallouk T E and Robinson J A 2015 Sci. Rep. 5 10013
- Homes C C, Ali M N and Cava R J 2015 Phys. Rev. B 92 161109
- Keum D H et al 2015 Nat. Phys. 11 482
- Jha R, Onishi S, Higashinaka R, Matsuda T D, Ribeiro R A and Aoki Y 2018 AIP Advances 8 101332
- Marchenkov V V, Domozhirova A N, Makhnev A A, Shreder E I, Naumov S V, Chistyakov V V, Huang J C A and Eisterer M 2019 Low Temp. Phys. 45 241
- Volkenshtein N V, Glinski М, Marchenkov V V, Startsev V E and Cherepanov A N 1989 Sov. Phys. JETP 95 2103
- Cherepanov A N, Marchenkov V V, Startsev V E, Volkenshtein N V and Glin'skii М 1990 J. Low Temp. Phys. 80 135
- Sokolov A V 1961 Optical Properties of Metals (Moscow: GIFML) [in Russian]