Academia.eduAcademia.edu

Outline

Electronic properties of WTe2 and MoTe2 single crystals

2019, Journal of Physics: Conference Series

https://doi.org/10.1088/1742-6596/1389/1/012149

Abstract

WTe2 and MoTe2 single crystals were grown, and their electrical resistivity in the temperature range from 80 K to 300 K, optical properties at room temperature in the spectral range of 0.17-5.0 eV were studied as well as theoretical calculations of the electronic structure were performed. It is shown that the temperature dependence of the electrical resistivity of orthorhombic WTe2 has a metallic type with resistivity value of (0.5-1) mOhmcm, while hexagonal MoTe2 has a semiconductor one and resistivity value (0.5-1) Ohmcm, which is three orders of magnitude larger than the resistivity of WTe2. Optical properties indicated that there is no contribution from free carriers in the entire spectral range studied. The calculated densities of the electronic states of MoTe2 and WTe2 showed the presence of a bunch of the molybdenum and tungsten electronic states in a wide energy interval with strong admixing of tellurium states. In the WTe2 compound, the larger number of the electronic state...

References (26)

  1. Chernozatonskii L A and Artukh A A 2018 Phys. Usp. 61 2
  2. Ali M N et al 2014 Nature 514 205
  3. Jolie W, Knispel T, Ehlen N, Nikonov K, Busse C, Grüneis A and Michely T 2019 Phys. Rev. B 99 115417
  4. Qi Y et al 2016 Nat. Commun. 7 10038
  5. Qian X F, Liu J W, Fu L and Li J 2014 Science 346 1344
  6. Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
  7. Huang L et al 2016 Nat. Mater. 15 1155
  8. Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 056805
  9. Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud'ko S L, Canfield P C and Kaminski A 2016 Phys. Rev. B 94 121113
  10. Deng K et al 2016 Nat. Phys. 12 1105
  11. Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z-M, Yang S A, Zhu Z, Alshareef H N and Zhang X X 2017 Nat. Commun. 8 2150
  12. Lv Y-Y et al 2017 Sci. Rep. 7 44587
  13. Xu S-Y et al 2015 Science 349 613
  14. Xu S-Y et al 2015 Nat. Phys. 11 748
  15. Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
  16. Yan B and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337
  17. Oliver S M et al 2017 2D Mater. 4 045008
  18. Kim H-J, Kang S-H, Hamada I and Son Y-W 2017 Phys. Rev. B 95 180101
  19. Lee C-H, Cruz-Silva E, Calderin L, Nguyen M A T, Hollander M J, Bersch B, Mallouk T E and Robinson J A 2015 Sci. Rep. 5 10013
  20. Homes C C, Ali M N and Cava R J 2015 Phys. Rev. B 92 161109
  21. Keum D H et al 2015 Nat. Phys. 11 482
  22. Jha R, Onishi S, Higashinaka R, Matsuda T D, Ribeiro R A and Aoki Y 2018 AIP Advances 8 101332
  23. Marchenkov V V, Domozhirova A N, Makhnev A A, Shreder E I, Naumov S V, Chistyakov V V, Huang J C A and Eisterer M 2019 Low Temp. Phys. 45 241
  24. Volkenshtein N V, Glinski М, Marchenkov V V, Startsev V E and Cherepanov A N 1989 Sov. Phys. JETP 95 2103
  25. Cherepanov A N, Marchenkov V V, Startsev V E, Volkenshtein N V and Glin'skii М 1990 J. Low Temp. Phys. 80 135
  26. Sokolov A V 1961 Optical Properties of Metals (Moscow: GIFML) [in Russian]