Automating question generation from educational text
2023, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.2309.15004Abstract
The use of question-based activities (QBAs) is wide-spread in education, traditionally forming an integral part of the learning and assessment process. In this paper, we design and evaluate an automated question generation tool for formative and summative assessment in schools. We present an expert survey of one hundred and four teachers, demonstrating the need for automated generation of QBAs, as a tool that can significantly reduce the workload of teachers and facilitate personalized learning experiences. Leveraging the recent advancements in generative AI, we then present a modular framework employing transformer based language models for automatic generation of multiple-choice questions (MCQs) from textual content. The presented solution, with distinct modules for question generation, correct answer prediction, and distractor formulation, enables us to evaluate different language models and generation techniques. Finally, we perform an extensive quantitative and qualitative evaluation, demonstrating trade-offs in the use of different techniques and models.
References (24)
- Ahmad, S.F., Rahmat, M.K., Mubarik, M.S., Alam, M.M., Hyder, S.I.: Artificial intelligence and its role in education. Sustainability 13(22), 12902 (2021)
- Bethencourt-Aguilar, A., Castellanos-Nieves, D., Sosa-Alonso, J.J., Area-Moreira, M.: Use of generative adversarial networks (gans) in educational technology re- search (2023)
- Bhat, B., Bhat, G.: Formative and summative evaluation techniques for improve- ment of learning process. European Journal of Business & Social Sciences 7(5), 776-785 (2019)
- Chen, S.F., Beeferman, D., Rosenfeld, R.: Evaluation metrics for language models (1998)
- Choi, E., He, H., Iyyer, M., Yatskar, M., Yih, W.t., Choi, Y., Liang, P., Zettlemoyer, L.: Quac: Question answering in context. arXiv preprint arXiv:1808.07036 (2018)
- Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec- tional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
- Ethayarajh, K.: How contextual are contextualized word representations? com- paring the geometry of bert, elmo, and gpt-2 embeddings. arXiv preprint arXiv:1909.00512 (2019)
- Faruqui, M., Das, D.: Identifying well-formed natural language questions. arXiv preprint arXiv:1808.09419 (2018)
- Floridi, L., Chiriatti, M.: Gpt-3: Its nature, scope, limits, and consequences. Minds and Machines 30, 681-694 (2020)
- Griffith, S., Subramanian, K., Scholz, J., Isbell, C.L., Thomaz, A.L.: Policy shap- ing: Integrating human feedback with reinforcement learning. Advances in neural information processing systems 26 (2013)
- Grover, K., Kaur, K., Tiwari, K., Kumar, P.: Deep learning based question genera- tion using t5 transformer. In: Advanced Computing: 10th International Conference, IACC 2020, Panaji, Goa, India, December 5-6, 2020, Revised Selected Papers, Part I 10. pp. 243-255. Springer (2021)
- Huberman, A., et al.: Qualitative data analysis a methods sourcebook (2014)
- Kriangchaivech, K., Wangperawong, A.: Question generation by transformers. arXiv preprint arXiv:1909.05017 (2019)
- Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Devlin, J., Lee, K., et al.: Natural questions: a bench- mark for question answering research. Transactions of the Association for Compu- tational Linguistics 7, 453-466 (2019)
- Lee, J., Wettig, A., Chen, D.: Phrase retrieval learns passage retrieval, too. arXiv preprint arXiv:2109.08133 (2021)
- Liang, C., Yang, X., Dave, N., Wham, D., Pursel, B., Giles, C.L.: Distractor gen- eration for multiple choice questions using learning to rank. In: Proceedings of the thirteenth workshop on innovative use of NLP for building educational applica- tions. pp. 284-290 (2018)
- Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
- Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
- Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving lan- guage understanding by generative pre-training (2018)
- Saldaña, J.: The coding manual for qualitative researchers. kindle e-reader version (2016)
- Schluter, N.: The limits of automatic summarisation according to rouge. In: Pro- ceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. pp. 41-45. Association for Computational Linguistics (2017)
- Solas, E., Sutton, F.: Incorporating digital technology in the general education classroom. Research in Social Sciences and Technology 3(1), 1-15 (2018)
- Stanja, J., Gritz, W., Krugel, J., Hoppe, A., Dannemann, S.: Formative assessment strategies for students' conceptions-the potential of learning analytics. British Journal of Educational Technology 54(1), 58-75 (2023)
- Zhang, C., Zhang, C., Zheng, S., Qiao, Y., Li, C., Zhang, M., Dam, S.K., Thwal, C.M., Tun, Y.L., Huy, L.L., et al.: A complete survey on generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need? arXiv preprint arXiv:2303.11717 (2023)