Wavelet-Based Estimation for Univariate Stable Laws
2006, Annals of the Institute of Statistical Mathematics
https://doi.org/10.1007/S10463-006-0042-ZAbstract
Stable distributions are characterized by four parameters which can be estimated via a number of methods, and although approximate maximum likelihood estimation techniques have been proposed, they are computationally intensive and difficult to implement. This article describes a fast, wavelet-based, regression-type method for estimating the parameters of a stable distribution. Fourier domain representations, combined with a wavelet multiresolution approach, are shown to be effective and highly efficient tools for inference in stable law families. Our procedures are illustrated and compared with other estimation methods using simulated data from stable distributions and an application to a real data example is explored. One novel aspect of this work is that here wavelets are being used to solve a parametric problem rather than a nonparametric one, which is the more typical context in wavelet applications.
References (61)
- Abramovich, F., Bailey, T.C. and Sapatinas, T. (2000). Wavelet analysis and its statistical applications. The Statistician, 49, 1-29
- Antoniadis, A., Grégoire, G. and McKeague, I. (1994). Wavelet methods for curve estimation. J. Amer. Statist. Assoc. 89(428), 1340-1353.
- Antoniadis, A. (1997). Wavelets in statistics: A review (with discussion). J. Italian Statist. Soc., 6, 97-144.
- Antoniadis, A., Grégoire, G. and Nason, G. (1999). Density and hazard rate estimation for right-censored data using wavelet methods. J. Royal Statist. Soc., B 61, 63-84.
- Bruce, A. G. and Gao, H.-Y. (1994). S+Wavelets, Users manual. StatSci, Seattle.
- Buckheit, J. B. and Donoho, D. (1995). Wavelab and Reproducible research. In A. Antoniadis and G. Oppenheim (eds.), Wavelets and Statistics, Lecture Notes in Statistics, 103, Springer-Verlag.
- Cappé, O., Moulines, E., Pesquet, J.-C., Petropulu, A. and Yang, X. (2002). Long-range dependence and heavy-tail modeling for teletraffic data. IEEE Signal Processing Magazine, Vol. 19, May 2002, p. 14-27
- Chambers, J.M., Mallows, C.L. and Stuck, B.W. (1976). A method for simulating stable random variables. J. Amer. Statist. Assoc., 71, 340-344.
- Chen, Y. (1991). Distributions for Asset Returns. PhD Thesis, SUNY-Stony Brook, Dept. of Economics.
- Christof, G. and Wolf, G. (1992). Convergence Theorems with a Stable Limit Law. Akademie Verlag, Berlin.
- Chui, K. (1992). Wavelets: A Tutorial in Theory and Applications. Academic Press, Boston.
- Cohen, A. and Ryan, R. D (1995). Wavelets and Multiscale Signal Processing. Chapman & Hall, London.
- Daubechies, I. (1992). Ten Lectures on Wavelets. CBMS-NSF Regional Conferences Series in Applied Mathematics. SIAM, Philadelphia.
- Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1996). Density estimation by wavelet thresholding. Ann. Statist. 24(2), 508-539.
- DuMouchel, W.H. (1971). Stable Distributions in Statistical Inference. Ph.D. Dissertation, Yale University.
- DuMouchel, W.H. (1973a). On the asymptotic normality of maximum likelihood estimates when sampling from a stable distribution. Ann. Statist., 1, 948-957.
- DuMouchel, W.H. (1973b). Stable distributions in statistical inference. I: Symmetric stable distributions compared to other symmetric long-tailed distributions. J. Amer. Statist. Assoc., 68, 469-482.
- DuMouchel, W.H. (1975). Stable distributions in statistical inference. II: Information from stably distributed samples. J. Amer. Statist. Assoc., 70, 386-393.
- DuMouchel, W.H. (1983). Estimating the stable index α in order to measure tail thickness: A critique. Ann. Statist., 11, 1019-1031.
- Fama, E. (1965). The behaviour of stock prices. J. Business, 38, 34-105.
- Fama, E. and Roll, R. (1968). Some properties of symmetric stable distributions. J. Amer. Statist. Assoc., 63, 817-836.
- Fama, E. and Roll, R. (1971). Parameter estimates for symmetric stable distributions. J. Amer. Statist. Assoc., 66, 331-338.
- Feller, W. (1971). An Introduction to Probability Theory and its Applications. Vol. 2, 2nd ed. Wiley, New York.
- Feuerverger, A. and McDunnough, P. (1981a). On some Fourier methods for inference. J. Amer. Statist. Assoc., 76, 379-387.
- Feuerverger, A. and McDunnough, P. (1981b). On efficient inference in symmetric stable laws and processes. In: Proceedings of the International Symposium on Statistics and Related Topics, Ottawa, May 1980, A.K.Md.E. Saleh et al., eds., North Holland, Amsterdam, 109-122.
- Feuerverger, A. and McDunnough, P. (1984). On statistical transform methods and their efficiency. Canadian Journal of Statistics, 12, 303-317.
- Flandrin, P. (1992). Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. Info. Theory, 38, 910-917.
- FracLab. (2002). INRIA Project Fractales. Open source freeware distributed by INRIA-Fractales: http://www-rocq.inria.fr/fractales.
- Gao, H.-Y. (1993). Wavelet estimation of Spectral densities in Time series analysis. Ph. D. Thesis, University of California, Berkeley.
- Gnedenko, V.B. and Kolmogorov, A.N. (1954). Limit distributions for Sums of Independent Random Variables. Addison-Wesley, Reading.
- Hall, P.G. (1981). A comedy of errors: the canonical form for a stable characteristic function. Bull. London Math. Soc., 13, 23-27.
- Hall, P. and Patil, P. (1995). On wavelet methods for estimating smooth functions. Bernoulli 1, 41-58.
- Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist., 3, 1163-1174.
- Holschneider, M. (1995). Wavelets: An Analysis Tool. Clarendon Press, Oxford.
- Holt, D.R. and Crow, E.L. (1973). Tables and graphs of the stable probability density functions. J. Res. Nat. Bur. Standards, 77B, Vols. 3 & 4.
- Ibragimov, I.A. and Linnik, Yu.V. (1971). Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.
- Janicki, A. and Weron, A. (1994). Simulation and Chaotic Behaviour of α-stable Stochastic Processes. Marcel Dekker, New York.
- Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1992). Estimation d'une densité de probabilité par méthode d'ondelettes. Compt. Rend. Acad. Sci. Paris A 315, 211-216.
- Koutrouvelis, I.A. (1980). Regression-type estimation of the parameters of stable laws. J. Amer. Statist. Assoc., 75, 918-928.
- Koutrouvelis, I.A. (1981). An iterative procedure for the estimation of the parameters of the stable law. Commun. Statist. -Simulation & Computation, 10, 17-28.
- Lukacs, E. (1970). Characteristic Functions. Hafner, Connecticut.
- Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 11, 674-693.
- Mallat, S.G. (1998). A Wavelet Tour of Signal Processing. Academic Press, San Diego.
- Mandelbrot, B.B. (1963, 1967, 1972). The variation of certain speculative prices. J. Business, 36, 394-419; 40, 393-413; and 45, 542-543
- McCulloch, J.H. (1986.) Simple consistent estimators of stable distribution parameters. Commun. Statist. -Computation & Simulation, 15, 1109-1136.
- Meyer, Y. (1990). Ondelettes et Opérateurs I: Ondelettes. Hermann, Paris.
- Mittnik, M. and Rachev, S. (1993). Modeling asset returns with alternative stable distributions. Econometric Rev., 12, 261-330.
- Mittnik, M. and Rachev, S., eds. (2000). Stable Paretian Models in Finance. Wiley, New York.
- Nason, G. J. and Silverman, B. W. (1994). The discrete wavelet transform in S. Journal of Computational and Graphical Statistics 3, 163-191.
- Nolan, J. (1997). Numerical calculation of stable densities and distribution functions. Commun. in Statist. -Stochastic Models, 13, 759-774.
- Nolan, J. (2001). Maximum likelihood estimation and diagnostics for stable distributions. In: Lévy Processes, O.E. Barndorff-Nielson, T. Mikosch and S.I. Resnick, eds., 379-400. Birkhauser, Boston.
- Ogden, T. R. (1997). Essential Wavelets for Statistical Applications and Data Analysis. Birkhäuser, Basel.
- Paulson, A.S., Halcomb, E.W. and Leitch, R.A. (1975). The estimation of the parameters of the stable laws. Biometrika, 62, 163-170.
- Press, S.J. (1972). Estimation in univariate and multivariate stable distributions. J. Amer. Statist. Assoc., 67, 842-846.
- Samorodnitsky, G. and Taqqu, M. (1994). Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York.
- Strang, G. (1986). Introduction to Applied Mathematics. Addison-Wellesley, Cambridge.
- Tribouley, K. (1995). Practical estimation of multivariate densities using wavelet methods. Statistica Neerlandica 49, 41-62.
- Uchaikin, V.V. and Zolotarev, V.M. (1999). Chance and Stability: Stable Distributions and their Applications. VSP, Utrecht
- Vidakovic, B. (1999). Statistical Modeling by Wavelets. Wiley, New York.
- Wahba, G. (1990). Spline models for observational data. CBMS-NSF regional conferences series in applied mathematics. SIAM, Philadelphia.
- Zolotarev, V.M. (1986). One-Dimensional Stable Distributions. Translations of Mathematical Monographs, Vol. 65, American Mathematical Society, Providence, Rhode Island. (Translation of the original Russian edition of 1983.)