Adaptive Direct RGB-D Registration and Mapping for Large Motions
2017, Springer eBooks
https://doi.org/10.1007/978-3-319-54190-7_12Abstract
Dense direct RGB-D registration methods are widely used in tasks ranging from localization and tracking to 3D scene reconstruction. This work addresses a peculiar aspect which drastically limits the applicability of direct registration, namely the weakness of the convergence domain. First, we propose an activation function based on the conditioning of the RGB and ICP point-to-plane error terms. This function strengthens the geometric error influence in the first coarse iterations, while the intensity data term dominates in the finer increments. The information gathered from the geometric and photometric cost functions is not only considered for improving the system observability, but for exploiting the different convergence properties and convexity of each data term. Next, we develop a set of strategies as a flexible regularization and a pixel saliency selection to further improve the quality and robustness of this approach. The methodology is formulated for a generic warping model and results are given using perspective and spherical sensor models. Finally, our method is validated in different RGB-D spherical datasets, including both indoor and outdoor real sequences and using the KITTI VO/SLAM benchmark dataset. We show that the different proposed techniques (weighted activation function, regularization, saliency pixel selection), lead to faster convergence and larger convergence domains, which are the main limitations to the use of direct methods.
References (33)
- Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in vari- ational motion estimation. IEEE PAMI 33 (2011)
- Braux-Zin, J., Dupont, R., Bartoli, A.: A general dense image matching framework combining direct and feature-based costs. In: IEEE ICCV. (2013)
- Howard, A.: Real-time stereo visual odometry for autonomous ground vehicles. In: IEEE IROS. (2008)
- Davison, A., Murray, D.: Simultaneous localization and map-building using active vision. IEEE TPAMI 24 (2002)
- Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: IEEE CVPR. (2004)
- Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image se- quences with ransac-based outlier rejection scheme. In: IEEE IV. (2010)
- Harris, C., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conference. (1988)
- Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60 (2004)
- Hager, G., Belhumeur, P.: Efficient region tracking with parametric models of geometry and illumination. IEEE TPAMI 20 (1998)
- Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli- cation to stereo vision. In: IJCAI. (1981)
- Irani, M., Anandan, P.: Robust multi-sensor image alignment. In: ICCV. (1998)
- Baker, S., Matthews, I.: Equivalence and efficiency of image alignment algorithms. In: IEEE CVPR. (2001)
- Mei, C., Benhimane, S., Malis, E., Rives, P.: Constrained multiple planar template tracking for central catadioptric cameras. In: BMVC. (2006)
- Caron, G., Marchand, E., Mouaddib, E.: Tracking planes in omnidirectional stere- ovision. In: IEEE ICRA. (2011)
- Comport, A., Malis, E., Rives, P.: Accurate quadrifocal tracking for robust 3d visual odometry. In: IEEE ICRA. (2007)
- Churchill, W., Tong, C., Gurau, C., Posner, I., Newman, P.: Know your limits: Embedding localiser performance models in teach and repeat maps. In: IEEE ICRA. (2015)
- Furgale, P., Barfoot, T.: Visual teach and repeat for long-range rover autonomy. JFR 27 (2010)
- Gelfand, N., Ikemoto, L., Rusinkiewicz, S., Levoy, M.: Geometrically stable sam- pling for the icp algorithm. In: 3DIM. (2003)
- Comport, A., Malis, E., Rives, P.: Real-time quadrifocal visual odometry. IJRR 29 (2010)
- T.Tykkala, Audras, C., Comport, A.: Direct iterative closest point for real-time visual odometry. In: ICCV Workshops. (2011)
- Kerl, C., Sturm, J., Cremers, D.: Dense visual SLAM for RGB-D cameras. In: IEEE IROS. (2013)
- Timofte, R., Gool, L.V.: Sparse flow: Sparse matching for small to large displace- ment optical flow. In: IEEE WCACV. (2015)
- Morency, L., Darrell, T.: Stereo tracking using icp and normal flow constraint. In: ICPR. (2002)
- Martins, R., Fernandez-Moral, E., Rives, P.: Dense accurate urban mapping from spherical RGB-D images. In: IEEE IROS. (2015)
- Gokhool, T., Martins, R., Rives, P., Despre, N.: A compact spherical RGBD keyframe-based representation. In: IEEE ICRA. (2015)
- Weikersdorfer, D., Gossow, D., Beetz, M.: Depth-adaptative superpixels. In: IEEE ICP. (2013)
- Fernandez-Moral, E., Mayol-Cuevas, W., Arevalo, V., Gonzalez-Jimenez, J.: Fast place recognition with plane-based maps. In: IEEE ICRA. (2013)
- Zhang, Z.: Parameter estimation techniques: A tutorial with application to conic fitting. Technical Report 2676, Inria (1995)
- Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: IEEE CVPR. (2012)
- Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC super- pixels compared to state-of-the-art superpixels methods. IEEE Trans. PAMI 34 (2012)
- Meilland, M., Comport, A., Rives, P.: Dense omnidirectional RGB-D mapping of large-scale outdoor environments for real-time localization and autonomous navi- gation. JFR 32 (2015)
- Fernandez-Moral, E., Gonzalez-Jimenez, J., Rives, P., Arevalo, V.: Extrinsic cal- ibration of a set of range cameras in 5 seconds without pattern. In: IEEE IROS. (2014)
- Barker, S., Matthews, I.: Lucas-kanade 20 years on: a unifying framework. IJCV 56 (2006)