Network structure of protein folding pathways
2007
Abstract
The classical approach to protein folding inspired by statistical mechanics avoids the high dimensional structure of the conformation space by using effective coordinates. Here we introduce a network approach to capture the statistical properties of the structure of conformation spaces. Conformations are represented as nodes of the network, while links are transitions via elementary rotations around a chemical bond. Self-avoidance of a polypeptide chain introduces degree correlations in the conformation network, which in turn lead to energy landscape correlations. Folding can be interpreted as a biased random walk on the conformation network. We show that the folding pathways along energy gradients organize themselves into scale free networks, thus explaining previous observations made via molecular dynamics simulations. We also show that these energy landscape correlations are essential for recovering the observed connectivity exponent, which belongs to a different universality class than that of random energy models. In addition, we predict that the exponent and therefore the structure of the folding network fundamentally changes at high temperatures, as verified by our simulations on the AK peptide.
References (25)
- Doye J. P. K. (2002) Phys Rev Lett 88, 238701.
- Newman M. E. J. (2003) SIAM REV 45, 167.
- Albert R, Barabási A. L. (2002) Rev Mod Phys 74, 67.
- Scala A, Amaral L. A. N, Barthélémy M. (2001) Europhys Lett 55, 594.
- Rao F, Caflisch A. (2004) J Mol Biol 342, 299.
- Toroczkai Z, Bassler K. E. (2004) Nature 428, 716.
- Toroczkai Z, Kozma B, Bassler K. E, Hengartner N. W, Korniss G. (2004) http://arxiv.org/abs/cond. mat/0408262.
- Ramachandran G. N, Ramakrishnan C, Sasisekharan V. (1963) J Mol Biol 7, 95.
- Levinthal C. (1969) in Mossbauer Spectroscopy in Biological Systems, eds DeBrunner J. T. P, Munck E. (University of Illinois Press, Monticello).
- Wetlaufer D. B. (1973) Proc Natl Acad Sci USA 70, 691
- Erdős P, Rényi A. (1959) Publ Math. (Debrecen) 6, 290.
- Watts D. J. (1999) Small Worlds: The Dynamics of Networks between Order and Randomness (Princeton University Press, Princeton).
- Barabási A. L, Albert R. (1999) Science 286, 509.
- Gnanakaran S, Hochstrasser R. M, Garcia A. E. (2004) Proc Natl Acad Sci USA 101, 9229.
- Paschek D, Gnanakaran S, Garcia A. E. (2005) Proc Natl Acad Sci USA 102, 6765.
- Scalley M, Baker D. (1997) Proc Natl Acad Sci USA 94, 10636.
- Bryngelson J. D, Wolynes P. G. (1987) Proc Natl Acad Sci USA 21, 7524.
- Plotkin S. S, Wang J, Wolynes P. G. (1996) Phys Rev E 53, 6271.
- Newman M. E. J. (2002) Phys Rev Lett 89, 208701.
- Dall J. C. (2002) Phys Rev E 66, 016121.
- Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz Jr. K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A. (1995) J Am Chem Soc 117, 5179.
- Garcia A. E., Sanbonmatsu K., (2002) Proc Natl Acad Sci USA 99, 2782.
- Ryckaert J. P., Ciccotti G., Berendsen H. J. C., (1997) J. Comput. Phys. 23, 327.
- Berman H., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E., (2000) Nucl Acids Res 28, 235.
- Kabsch W., Sander C., (1983) Biopolymers 22, 2577.