Anomalies and the lattice Schwinger model: Paradigm not paradox
1982, Physical review
Abstract
AI
AI
The paper discusses the lattice Schwinger model in the context of anomalies, exploring a framework that reconciles seeming paradoxes associated with it. Through mathematical formulations, it presents a detailed analysis of the Hamiltonian for free fermionic fields on a lattice, emphasizing the implications of lattice spacing, momentum cutoff, and number operator behaviors.
References (8)
- David Horn and M. Weinstein, SLAC-PUB-2864; submitted to Phys. Rev.
- D. Luuk H. Karsten and Jan Smit, Nucl. Phys., 8183, 103, 1981; Luuk H. Karsten and Jan Smit, Phys. Lett. 858, 100, 1979; Luuk H. Karsten and Jan Smit, Nucl. Phys. b144, 536, 1978.
- H. B. Nielsen and M. Ninomiya, Phys. Lett. 1058, 219, 1981; H. B. Nielsen and M. Nincmiya, Nucl. Phys., 8193, 173, 1981; H. B. Nielsen and M. Ninomiya, Nucl. Phys., B185, 20, 1981.
- Paul H. Ginsparg and Kenneth G. Wilson, CLNS-811520, Dee 1981 and references cited therein. This concept is introduced for the first time in J. Kogut and Leonard Susskind, Phys. Rev. Dll, 3594, 1975.
- S. D. Orell, Marvin Weinstein and S. Yankielouicz, Phys. Rev. 014, 1627, 1976. The fact that a long range gradient is a natural result of integrating out high momentum degrees of freedom is discussed in Helen R. Quinn and Marvin Weinstein, SLAC-PUB-2795, Sep 1981, submitted to Phys. Rev. D. J. H. Louenstein and J. A. Swieca, Annals Phys., 68, 172, 1971; earlier uork on this subject is contained in J. Schwinger, Phys. Rev., 128, 2425, 1962; L. S. Brown, Nuovo Cimento, 29, 617, 1963; B.
- Zumino, Phys. Lett., 10, 224, 1964; C. R. Hagen, Nuovo Cimento, B51, 169, 1967.
- Sidney Coleman, R. Jackiu and Leonard Susskind, Annals of Phys., 93, 267, 1975; Sidney Coleman, Annals of Phys., 101, 239, 1976.
- Jeffrey Il. Rabin, SLAC-PUB-2676, Feb 1981, submitted to Phys. Rev. D.