Academia.eduAcademia.edu

Outline

Anomalies and the lattice Schwinger model: Paradigm not paradox

1982, Physical review

Abstract
sparkles

AI

The paper discusses the lattice Schwinger model in the context of anomalies, exploring a framework that reconciles seeming paradoxes associated with it. Through mathematical formulations, it presents a detailed analysis of the Hamiltonian for free fermionic fields on a lattice, emphasizing the implications of lattice spacing, momentum cutoff, and number operator behaviors.

References (8)

  1. David Horn and M. Weinstein, SLAC-PUB-2864; submitted to Phys. Rev.
  2. D. Luuk H. Karsten and Jan Smit, Nucl. Phys., 8183, 103, 1981; Luuk H. Karsten and Jan Smit, Phys. Lett. 858, 100, 1979; Luuk H. Karsten and Jan Smit, Nucl. Phys. b144, 536, 1978.
  3. H. B. Nielsen and M. Ninomiya, Phys. Lett. 1058, 219, 1981; H. B. Nielsen and M. Nincmiya, Nucl. Phys., 8193, 173, 1981; H. B. Nielsen and M. Ninomiya, Nucl. Phys., B185, 20, 1981.
  4. Paul H. Ginsparg and Kenneth G. Wilson, CLNS-811520, Dee 1981 and references cited therein. This concept is introduced for the first time in J. Kogut and Leonard Susskind, Phys. Rev. Dll, 3594, 1975.
  5. S. D. Orell, Marvin Weinstein and S. Yankielouicz, Phys. Rev. 014, 1627, 1976. The fact that a long range gradient is a natural result of integrating out high momentum degrees of freedom is discussed in Helen R. Quinn and Marvin Weinstein, SLAC-PUB-2795, Sep 1981, submitted to Phys. Rev. D. J. H. Louenstein and J. A. Swieca, Annals Phys., 68, 172, 1971; earlier uork on this subject is contained in J. Schwinger, Phys. Rev., 128, 2425, 1962; L. S. Brown, Nuovo Cimento, 29, 617, 1963; B.
  6. Zumino, Phys. Lett., 10, 224, 1964; C. R. Hagen, Nuovo Cimento, B51, 169, 1967.
  7. Sidney Coleman, R. Jackiu and Leonard Susskind, Annals of Phys., 93, 267, 1975; Sidney Coleman, Annals of Phys., 101, 239, 1976.
  8. Jeffrey Il. Rabin, SLAC-PUB-2676, Feb 1981, submitted to Phys. Rev. D.