Beyond Scaling and Locality in Turbulence
2007, Journal of Statistical Physics
https://doi.org/10.1007/S10955-007-9322-0Abstract
An analytic perturbation theory is suggested in order to find finite-size corrections to the scaling power laws. In the frame of this theory it is shown that the first order finite-size correction to the scaling power laws has following form S(r) ∼ = cr α 0 [ln(r/η)] α 1 , where η is a finite-size scale (in particular for turbulence, it can be the Kolmogorov dissipation scale). Using data of laboratory experiments and numerical simulations it is shown shown that a degenerate case with α0 = 0 can describe turbulence statistics in the near-dissipation range r > η, where the ordinary (power-law) scaling does not apply. For moderate Reynolds numbers the degenerate scaling range covers almost the entire range of scales of velocity structure functions (the log-corrections apply to finite Reynolds number). Interplay between local and non-local regimes has been considered as a possible hydrodynamic mechanism providing the basis for the degenerate scaling of structure functions and extended self-similarity. These results have been also expanded on passive scalar mixing in turbulence. Overlapping phenomenon between local and non-local regimes and a relation between position of maximum of the generalized energy input rate and the actual crossover scale between these regimes are briefly discussed.
References (29)
- R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioloi, and S. Succi, Phys. Rev. E., 48: R29 (1993).
- R. Benzi, L. Biferale, S. Ciliberto, M.V. Struglia and R. Tripiccione, Physica D 96: 162 (1996).
- D. Sornette, Critical Phenomena in Natural Sciences (Springer, New York 2004).
- L. Moriconi, A.L.C. Pereira, and P.A. Schulz, Phys. Rev. B 69: 45109 (2004).
- K.G. Aivalis, K.R. Sreenivasan, Y. Tsuji, J.C. Kiewicki and C.A. Biltoft, Phys. Fluids, 14: 2439 (2002).
- A. Bershadskii and K.R. Sreenivasan, Phys. Rev. Lett., 93: 064501 (2004).
- A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, Vol. 2, (MIT Press, Cambridge 1975)
- K.R. Sreenivasan and R.A. Antonia, Annu. Rev. Fluid Mech. 29: 435 (1997)
- M. Nelkin, Adv. Phys. 43: 143 (1994).
- C. Meneveau, Phys. Rev. E 54: 3657 (1996).
- T. Nakano, D. Fukayama, A. Bershadskii, and T. Gotoh, J. Phys. Soc. Japan, 71: 2148 (2002).
- K.R. Sreenivasan and A. Bershadskii, Pramana, 64: 315 (2005).
- J. Schumacher, K. R. Sreenivasan, and V. Yakhot, arXiv:nlin.CD/0604072
- V. Yakhot, Physica D, 215 166 (2006).
- K.R. Sreenivasan and A. Bershadskii, J. Fluid. Mech. 554: 477 (2006).
- G.K. Batchelor, G.K. An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1970).
- B.R. Pearson, P.-A. Krogstad and W. van de Water, Phys. Fluids 14: 1288 (2002)
- T. Gotoh, D. Fukayama and T. Nakano, Phys. Fluids, 14: 1065 (2002)
- H.S. Kang, S. Chester and C. Meneveau, J. Fluid. Mech., 480: 129 (2003).
- B.B. Kadomtsev, Plasma Turbulence (Academic Press, New York, 1965).
- S. Nazarenko and J.-P. Laval, J. Fluid Mech., 408: 301 (2000).
- J-P. Laval, B. Dubrulle and S. Nazarenko, Phys. Fluids, 13: 1995 (2001).
- K.R. Sreenivasan and B. Dhruva, Prog. Theor. Phys. Suppl. 130: 103 (1998)
- E.A. Novikov, Sov. Phys. JETP, 20: 1290 (1965).
- K.R. Sreenivasan, Phys. Fluids, 8: 189 (1996).
- Z. Warhaft, Ann. Rev. Fluid Mach., 32: 203 (2000).
- E. Villermaux, C. Innocenti and J. Duplat, Phys. Fluids, 13, 284 (2001).
- T. Watanabe and T. Gotoh, New J. Phys. 6: Art. No. 40. (2004)
- F. Schmidt, D. Schertzer, S. Lovejoy and Y. Brunet, Europhys. Lett. 34: 195 (1996).