Academia.eduAcademia.edu

Outline

Beyond Scaling and Locality in Turbulence

2007, Journal of Statistical Physics

https://doi.org/10.1007/S10955-007-9322-0

Abstract

An analytic perturbation theory is suggested in order to find finite-size corrections to the scaling power laws. In the frame of this theory it is shown that the first order finite-size correction to the scaling power laws has following form S(r) ∼ = cr α 0 [ln(r/η)] α 1 , where η is a finite-size scale (in particular for turbulence, it can be the Kolmogorov dissipation scale). Using data of laboratory experiments and numerical simulations it is shown shown that a degenerate case with α0 = 0 can describe turbulence statistics in the near-dissipation range r > η, where the ordinary (power-law) scaling does not apply. For moderate Reynolds numbers the degenerate scaling range covers almost the entire range of scales of velocity structure functions (the log-corrections apply to finite Reynolds number). Interplay between local and non-local regimes has been considered as a possible hydrodynamic mechanism providing the basis for the degenerate scaling of structure functions and extended self-similarity. These results have been also expanded on passive scalar mixing in turbulence. Overlapping phenomenon between local and non-local regimes and a relation between position of maximum of the generalized energy input rate and the actual crossover scale between these regimes are briefly discussed.

References (29)

  1. R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioloi, and S. Succi, Phys. Rev. E., 48: R29 (1993).
  2. R. Benzi, L. Biferale, S. Ciliberto, M.V. Struglia and R. Tripiccione, Physica D 96: 162 (1996).
  3. D. Sornette, Critical Phenomena in Natural Sciences (Springer, New York 2004).
  4. L. Moriconi, A.L.C. Pereira, and P.A. Schulz, Phys. Rev. B 69: 45109 (2004).
  5. K.G. Aivalis, K.R. Sreenivasan, Y. Tsuji, J.C. Kiewicki and C.A. Biltoft, Phys. Fluids, 14: 2439 (2002).
  6. A. Bershadskii and K.R. Sreenivasan, Phys. Rev. Lett., 93: 064501 (2004).
  7. A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, Vol. 2, (MIT Press, Cambridge 1975)
  8. K.R. Sreenivasan and R.A. Antonia, Annu. Rev. Fluid Mech. 29: 435 (1997)
  9. M. Nelkin, Adv. Phys. 43: 143 (1994).
  10. C. Meneveau, Phys. Rev. E 54: 3657 (1996).
  11. T. Nakano, D. Fukayama, A. Bershadskii, and T. Gotoh, J. Phys. Soc. Japan, 71: 2148 (2002).
  12. K.R. Sreenivasan and A. Bershadskii, Pramana, 64: 315 (2005).
  13. J. Schumacher, K. R. Sreenivasan, and V. Yakhot, arXiv:nlin.CD/0604072
  14. V. Yakhot, Physica D, 215 166 (2006).
  15. K.R. Sreenivasan and A. Bershadskii, J. Fluid. Mech. 554: 477 (2006).
  16. G.K. Batchelor, G.K. An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1970).
  17. B.R. Pearson, P.-A. Krogstad and W. van de Water, Phys. Fluids 14: 1288 (2002)
  18. T. Gotoh, D. Fukayama and T. Nakano, Phys. Fluids, 14: 1065 (2002)
  19. H.S. Kang, S. Chester and C. Meneveau, J. Fluid. Mech., 480: 129 (2003).
  20. B.B. Kadomtsev, Plasma Turbulence (Academic Press, New York, 1965).
  21. S. Nazarenko and J.-P. Laval, J. Fluid Mech., 408: 301 (2000).
  22. J-P. Laval, B. Dubrulle and S. Nazarenko, Phys. Fluids, 13: 1995 (2001).
  23. K.R. Sreenivasan and B. Dhruva, Prog. Theor. Phys. Suppl. 130: 103 (1998)
  24. E.A. Novikov, Sov. Phys. JETP, 20: 1290 (1965).
  25. K.R. Sreenivasan, Phys. Fluids, 8: 189 (1996).
  26. Z. Warhaft, Ann. Rev. Fluid Mach., 32: 203 (2000).
  27. E. Villermaux, C. Innocenti and J. Duplat, Phys. Fluids, 13, 284 (2001).
  28. T. Watanabe and T. Gotoh, New J. Phys. 6: Art. No. 40. (2004)
  29. F. Schmidt, D. Schertzer, S. Lovejoy and Y. Brunet, Europhys. Lett. 34: 195 (1996).