Academia.eduAcademia.edu

Outline

– 255 3 D DNA Origami Map Structure Simulation

2018

Abstract

This paper presents the latest trends and approaches used for constructing nanoscale structures of 2D objects through DNA folding based on the DNA origami technology developed by Rothemund. The Rothemund method has been used in the construction of various shapes, such as the development of the nanoscale structure for the United States map. Following the steps of Rothemund’s technique, we simulate the construction of the Romanian map nanoscale 2D structure, embedding the number 100 into it. Key-words: DNA; origami; self-assembly; nanostructure; Romanian map

References (22)

  1. G. AMOAKO, M. ZHOU, R. YE, L. ZHUANG, X. YANG, and Z. SHEN, 3D DNA origami designed with caDNAno, Chinese Science Bulletin, vol. 58, pp. 3019-3022, Aug. 2013.
  2. E. S. ANDERSEN, M. DONG, M. M. NIELSEN, K. JAHN, R. SUBRAMANI, W. MAMDOUH, M. M. GOLAS, B. SANDER, H. STARK, C. L. P. OLIVEIRA, J. S. PEDERSEN, V. BIRKEDAL, F. BESENBACHER, K. V. GOTHELF, and J. KJEMS, Self-assembly of a nanoscale DNA box with a controllable lid, Nature, vol. 459, p. 73, May 2009.
  3. E. BEN-ISHAY, A. ABU-HOROWITZ, and I. BACHELET, Designing a bio-responsive robot from DNA origami, Journal of Visualized Experiments : JoVE, p. 50268, July 2013.
  4. C. E. CASTRO, F. KILCHHERR, D.-N. KIM, E. L. SHIAO, T. WAUER, P. WORTMANN, M. BATHE, and H. DIETZ, A primer to scaffolded DNA origami, Nature Methods, vol. 8, p. 221, Feb. 2011.
  5. H. DIETZ, S. M. DOUGLAS, and W. M. SHIH, Folding DNA into twisted and curved nanoscale shapes, Science, vol. 325, no. 5941, pp. 725-730, 2009.
  6. S. M. DOUGLAS, J. J. CHOU, and W. M. SHIH, DNA-nanotube-induced alignment of membrane pro- teins for NMR structure determination, Proceedings of the National Academy of Sciences, vol. 104, no. 16, pp. 6644-6648, 2007.
  7. S. M. DOUGLAS, A. H. MARBLESTONE, S. TEERAPITTAYANON, A. VAZQUEZ, G. M. CHURCH, and W. M. SHIH, Rapid prototyping of 3D DNA-origami shapes with caDNAno, Nucleic Acids Research, vol. 37, pp. 5001-5006, Aug. 2009.
  8. S. M. DOUGLAS, H. DIETZ, T. LIEDL, B. H ÖGBERG, F. GRAF, and W. M. SHIH, Self-assembly of DNA into nanoscale three-dimensional shapes, Nature, vol. 459, p. 414, May 2009.
  9. S. M. DOUGLAS, caDNAno software -version 2.2.0, 2009-2012.
  10. S. HAMADA and S. MURATA, Substrate-assisted assembly of interconnected single-duplex DNA nanostructures, Angewandte Chemie, vol. 121, no. 37, pp. 6952-6955, 2009.
  11. Y. HE, Y. CHEN, H. LIU, A. E. RIBBE, and C. MAO, Self-assembly of hexagonal DNA two- dimensional (2D) arrays, J. Am. Chem. Soc., vol. 127, pp. 12202-12203, Sept. 2005.
  12. D.-N. KIM, F. KILCHHERR, H. DIETZ, and M. BATHE, Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures, Nucleic Acids Research, vol. 40, pp. 2862-2868, Apr. 2012.
  13. T. H. LABEAN, H. YAN, J. KOPATSCH, F. LIU, E. WINFREE, J. H. REIF, and N. C. SEEMAN, Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes, J. Am. Chem. Soc., vol. 122, pp. 1848-1860, Mar. 2000.
  14. L. QIAN, Y. WANG, Z. ZHANG, J. ZHAO, D. PAN, Y. ZHANG, Q. LIU, C. FAN, J. HU, and L. HE, Analogic China map constructed by DNA, Chinese Science Bulletin, vol. 51, pp. 2973-2976, Dec. 2006.
  15. J. REIF, H. CHANDRAN, N. GOPALKRISHNAN, and T. LABEAN, Self-assembled DNA nanostruc- tures and DNA devices, in Nanofabrication Handbook, pp. 299-328, CRC Press, Taylor and Francis Group, New York, 2012.
  16. P. W. K. ROTHEMUND, Folding DNA to create nanoscale shapes and patterns, Nature, vol. 440, p. 297, Mar. 2006.
  17. N. C. SEEMAN, Nanotechnology and the double helix, Scientific American, vol. 290, no. 6, pp. 64- 75, 2004.
  18. P. Wang, T. A. MEYER, V. PAN, P. K. DUTTA, and Y. KE, The beauty and utility of DNA origami, Chem. vol. 2, no. 3, pp. 359 -382, 2017.
  19. E. WINFREE, Universal computation via self-assembly of DNA: Some theory and experiments, DI- MACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 44, pp. 172-190, 1998.
  20. H. YAN, L. FENG, T. H. LABEAN, and J. H. REIF, Parallel molecular computations of pairwise exclusive-or (xor) using DNA "string tile" self-assembly, J. Am. Chem. Soc., vol. 125, pp. 14246- 14247, Nov. 2003.
  21. H. YU, T. YE, C. YI, D. ZHAOXIANG, R. A. E., and M. CHENGDE, Sequence symmetry as a tool for designing DNA nanostructures, Angewandte Chemie, vol. 117, no. 41, pp. 6852-6854, 2005.
  22. Autodesk Maya, Autodesk MAYA 2015 software -student version 5.3.2.800, 2015. last accessed: 29.05.2018.