Academia.eduAcademia.edu

Outline

EVOLVING GRAPH BASED KNOWLEDGE SPACE MODEL FOR TUTORING SYSTEMS

2024

https://doi.org/10.1556/606.2024.01058

Abstract

Intelligent Tutoring Systems are based on the knowledge-module that is holding the system's knowledge in a well-structured format. Considering the current state of the art knowledge-module representations, we lack a model that can represent evolving information. Representing evolving information is needed for those tutoring systems that are working with dynamically changing domains, e.g.: software science. In this paper a new combined model is presented that is based on the Ontology model and the fundamentals of Knowledge Space Theory. Our new model introduces the term of abstract time to be able to formulate an evolving knowledge graph. Our model also introduces the term of evoking-hooks that makes it possible to realize connections between external domain elements and our model's nodes.

References (23)

  1. References
  2. Csépányi-Fürjes, L. (2023). Controllable and explainable AI framework in the Automatic Assessment domain. 12th International Conference on Applied Informatics (ICAI 2023).
  3. Albert, D., Hockemeyer, C., Kickmeier-Rust, M. D., Nussbaumer, A., & Steiner, C. M. (2012). E-learning based on metadata, ontologies and competence-based knowledge space theory. Communications in Computer and Information Science, 295 CCIS. https://doi.org/10.1007/978-3-642-32826-8_3
  4. Zhang, Q., Xie, Q., & Wang, G. (2016). A survey on rough set theory and its application. CAAI Transactions on Intelligence Technology. https://doi.org/10.1016/j.trit.2016.11.001
  5. Cosyn, E., Uzun, H., Doble, C., & Matayoshi, J. (2021). A practical perspective on knowledge space theory: ALEKS and its data. Journal of Mathematical Psychology, 101. https://doi.org/10.1016/j.jmp.2021.102512
  6. Doignon, J. P., & Falmagne, J. C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23(2). https://doi.org/10.1016/S0020- 7373(85)80031-6
  7. de Chiusole, D., Stefanutti, L., Anselmi, P., & Robusto, E. (2020). Stat-Knowlab. Assessment and Learning of Statistics with Competence-based Knowledge Space Theory. International Journal of Artificial Intelligence in Education, 30(4). https://doi.org/10.1007/s40593-020-00223-1
  8. Kanellopoulos, D., Kotsiantis, S., & Pintelas, P. (2006). Ontology-based learning applications: A development methodology. Proceedings of the IASTED International Conference on Software Engineering, as Part of the 24th IASTED International Multi- Conference on APPLIED INFORMATICS, 2006.
  9. Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2). https://doi.org/10.1006/knac.1993.1008
  10. Pierrakeas, C., Solomou, G., & Kameas, A. (2012). An ontology-based approach in learning programming languages. Proceedings of the 2012 16th Panhellenic Conference on Informatics, PCI 2012. https://doi.org/10.1109/PCi.2012.78
  11. Nyitrai, E., & Varga, B. (2012). Ontology-based higher educational information systems. Pollack Periodica, 7(3). https://doi.org/10.1556/Pollack.7.2012.3.14
  12. Sewunetie, W. T., Hussein, G., Ahmed, A., & Kovács, L. (2019). THE DEVELOPMENT AND ANALYSIS OF EXTENDED ARCHITECTURE MODEL FOR INTELLIGENT TUTORING SYSTEMS. Gradus 6(4), 128-138.
  13. Kanellopoulos, D., Kotsiantis, S., & Pintelas, P. (2006). Ontology-based learning applications: A development methodology. Proceedings of the IASTED International Conference on Software Engineering, as Part of the 24th IASTED International Multi- Conference on APPLIED INFORMATICS, 2006.
  14. Koppen, M., & Doignong, J.-P. (1990). How to Build a Knowledge Space by Querying an Expert. In JOURNAL OF MATHEMATICAL PSYCHOLOGY (Vol. 34).
  15. Falmagne, J.-C., Cosyn, E., Doignon, J.-P., & Thiery, N. (2004). The assessment of knowledge, in theory and in practice. 609-615. https://doi.org/10.1109/kimas.2003.1245109
  16. Albert, D., & Lukas, J. (Eds.). (1999). Knowledge spaces: Theories, empirical research, and applications. Lawrence Erlbaum Associates Publishers.
  17. Falmagne, J. C., & Doignon, J. P. (1988). A markovian procedure for assessing the state of a system. Journal of Mathematical Psychology, 32(3). https://doi.org/10.1016/0022- 2496(88)90011-9
  18. Tóth, Z. (2005). A tudásszerkezet és a tudás szerveződésének vizsgálata a tudástér-elmélet alapján. Magyar Pedagógia, 105(1), 59-82.
  19. Stefanutti, L., Anselmi, P., de Chiusole, D., & Spoto, A. (2020). On the polytomous generalization of knowledge space theory. Journal of Mathematical Psychology, 94. https://doi.org/10.1016/j.jmp.2019.102306
  20. Xie, X., Xu, W., & Li, J. (2023). A novel concept-cognitive learning method: A perspective from competences. Knowledge-Based Systems, 265. https://doi.org/10.1016/j.knosys.2023.110382
  21. Time Ontology in OWL, W3C Candidate Recommendation Draft 15 November 2022. [Online]. Available: https://www.w3.org/TR/owl-time/ (last accessed 10 December 2023).
  22. Wang, Y., Yuan, Y., Ma, Y., & Wang, G. (2019). Time-Dependent Graphs: Definitions, Applications, and Algorithms. In Data Science and Engineering (Vol. 4, Issue 4, pp. 352- 366). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s41019-019-00105-0
  23. Ruppenhofer, J, M. Ellsworth, M. Petruck, C. Johnson, and C. Baker, and J. Scheffczyk. 2016. FrameNet II: extended theory and practice. https://framenet.icsi.berkeley.edu/fndrupal/index.php?q=the_book (last accessed 10 December 2023).