Academia.eduAcademia.edu

Outline

Terminal adenylation in the synthesis of RNA by Q beta replicase

1983, Journal of Biological Chemistry

https://doi.org/10.1016/S0021-9258(18)33084-9

Abstract

We investigated the apparent requirement that Qp replicase must add a nontemplated adenosine to the 3' end of newly synthesized RNA strands. We used abbreviated MDV-1 (+)-RNA templates that lacked either 62 or 63 nucleotides at their 5' end in Qp replicase reactions. The MDV-1 (-)-RNA strands synthesized from these abbreviated (+)-strand templates were released from the replication complex, yet they did not possess a nontemplated 3'4erminal adenosine. These results imply that, despite observations that all naturally occurring RNAs synthesized by Qp replicase possess a nontemplated 3'-adenosine, the addition of an extra adenosine is not an obligate step for the release of completed strands. Since the abbreviated templates lacked a normal 5' end, it is probable that a particular sequence at the 5' end of the template is required for terminal adenylation to occur. All natural products of the RNA-directed RNA polymerase, Q/3 replicase (l), possess a 3'-terminal adenosine (2), including Q/3 RNA (3), MDV-1 RNA (4), microvariant RNA,' and the nanovariant RNAs (5). This terminal adenosine, unlike all the other nucleotides in the product strand, is not the result of normal, template-directed, Watson-Crick base-pairing. replicase synthesizes a single-stranded complementary product in an antiparallel manner from a single-stranded template (6, 7). Since the 5'-nucleotide of the template strand is always a guanosine, the expected 3"terminal nucleotide is a cytidine. Yet, Qp replicase always adds an adenosine to this cytidine. The role played by this 3"terminal adenosine in replication remains a mystery. It does not serve as the template for the first nucleotide of the product strand, but is passed over by the replicase in favor of the next template nucleotide (8). Removal of the terminal adenosine from the template does not impair initiation or chain elongation of the product strand (9). It has therefore been suggested that terminal adenylation may be required for release of the product strand from the replication complex (3, 10). Indeed, terminal adenylation does appear to take place prior to product chain release, since QP RNA that had its 3"adenosine removed could not be readenylated by incubation with Q/3 replicase (3). In this paper, we report the results of experiments designed to determine if terminal adenylation is required for chain release. We employed MDV-1 RNA (ll), a naturally occurring template for QP replicase that is 221 nucleotides long and

References (19)

  1. REFERENCES
  2. Haruna, I., and Spiegelman, S. (1965) Proc. Natl. Acad. Sci. U. S. A . 54,579-587
  3. August, J. T., Banerjee, A. K., Eoyang, L., Franze de Fernandez, M. T., Hori, K., Kuo, C. H., Rensing, U., and Shapiro, L. (1968) Cold Spring Harbor Symp. Quant. Biol. 33, 73-81
  4. Weber, H., and Weissmann, C. (1970) J. Mol. Biol. 51, 215-224
  5. Mills, D. R., Kramer, F. R., Dobkin, C., Nishihara, T., and Cole, P. E. (1980) Biochemistry 19, 228-236
  6. Schaffner, W., Riiegg, K. J., and Weissmann, C. (1977) J. Mol. Biol. 117,877-907
  7. Spiegelman, S., Pace, N. R., Mills, D. R., Levisohn, R., Eikhom, T. S., Taylor, M. M., Peterson, R. L., and Bishop, D. H. L. (1968) Cold Spring Harbor Symp. Quant. Biol. 33, 101-124
  8. Weissmann, C., Feix, G., and Slor, H. (1968) Cold Spring Harbor Symp. Quant. Bid. 33,83-100
  9. Goodman, H. M., Billeter, M. A., Hindley, J., and Weissmann, C. Rensing, U., and August, J. T. (1969) Nature 224, 853-856
  10. Blumenthal, T., and Carmichael, G. G. (1979) Annu. Rev. Bio- Kacian, D. L., Mills, D. R., Kramer, F. R., and Spiegelman, S. (1970) P ~o c . Natl. Acad. Sci. U. S. A . 67,921-928 chem. 48,525-548
  11. Mills, D. R., Kramer, F. R., and Spiegelman, S. (1973) Science Kramer, F. R., and Mills, D. R. (1978) Proc. Natl. Acad. Sri. U.
  12. Nishihara, T., Mills, D. R., and Kramer, F. R. (1983) J . Biochem.
  13. Eoyang, L., and August, J. T. (1968) Methods Enzymol. 12B, Kramer, F. R., Mills, D. R., Cole, P. E., Nishihara, T., and Mills, D. R., Dobkin, C., and Kramer, F. R. (1978) Cell 15, 541- Sakonju, S., Bogenhagen, D. F., and Brown, D. D. (1980) Cell 19, Casey, J., and Davidson, N. (1977) Nucleic Acids Res. 4, 1539- Mills, D. R., and Kramer, F. R. (1979) Proc. Natl. Acad. Sei. U.
  14. Sanger, F., Brownlee, G . G., and Barrell, B. G. (1965) J. Mol. Biol.
  15. Sato-Asano, K. (1959) J. Biochem. 46, 31-37
  16. Uchida, T., Arima, T., and Egami, F. (1970) J. Biochem. 67,91- Simoncsits, A,, Brownlee, G. G., Brown, R. S., Rubin, J. R., and Brownlee, G. G., and Sanger, F. (1967) J. Mol. B i d . 23, 337-353
  17. Uchida, T., and Egami, F. (1967) J. Biochem.. 61,44-53 180,916-927 S. A . 75,5334-5338 93, in press 530-540
  18. Spiegelman, S. (1974) J. Mol. Biol. 89, 719-736 550 13-25 1552 S. A . 76, 2232-2235 13, 373-398
  19. Guilley, H. (1977) Nature 269,833-836