Academia.eduAcademia.edu

Outline

The cross-correlation measure for families of binary sequences

Applied Algebra and Number Theory

https://doi.org/10.1017/CBO9781139696456.009

Abstract

Large families of binary sequences of the same length are considered and a new measure, the cross-correlation measure of order k is introduced to study the connection between the sequences belonging to the family. It is shown that this new measure is related to certain other important properties of families of binary sequences. Then the size of the cross-correlation measure is studied. Finally, the cross-correlation measures of two important families of pseudorandom binary sequences are estimated.

Key takeaways
sparkles

AI

  1. The text introduces a cross-correlation measure of order k for analyzing binary sequence families.
  2. Binary sequences' pseudorandomness is characterized by measures like well-distribution and correlation.
  3. The size of a family of binary sequences should exceed 2^(c1*N) for robust pseudorandomness.
  4. Small cross-correlation ensures sequences are distinct and supports the strict avalanche property.
  5. Family complexity and cross-correlation measures can be independent; both must be evaluated.

References (44)

  1. S. Abrahamyan, M. Alizadeh, M. K. Kyureghyan, Recursive construc- tions of irreducible polynomials over finite fields, Finite Fields Appl. 18 (2012), 738-745.
  2. R. Ahlswede, L. H. Khachatrian, C. Mauduit and A. Sárközy, A com- plexity measure for families of binary sequences, Period. Math. Hungar. 46 (2003), 107-118.
  3. R. Ahlswede, C. Mauduit and A. Sárközy, Large families of pseudoran- dom sequences of k symbols and their complexity. I, Lecture Notes in Comput. Sci. 4123, General Theory of Information Transfer and Com- binatorics, Springer, Berlin, 2006; pp. 293-307.
  4. R. Ahlswede, C. Mauduit and A. Sárközy, Large families of pseudoran- dom sequences of k symbols and their complexity. II, Lecture Notes in Comput. Sci. 4123, General Theory of Information Transfer and Com- binatorics, Springer, Berlin, 2006; pp. 308-325.
  5. N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira and V. Rödl, Mea- sures of pseudorandomness for finite sequences: minimal values, Com- bin., Probab. Comput. 15 (2005), 1-29.
  6. N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira and V. Rödl, Measures of pseudorandomness for finite sequences: typical values, Proc. London Math. Soc. 95 (2007), 778-812.
  7. V. Anantharam, A technique to study the correlation measures of binary sequences, Discrete Math. 308 (2008), 6203-6209.
  8. A. Bérczes, J. Ködmön and A. Pethő, A one-way function based on norm form equations, Period. Math. Hungar. 49 (2004), 1-13.
  9. J. Cassaigne, C. Mauduit and A. Sárközy, On finite pseudorandom bi- nary sequences, VII: The measures of pseudorandomness, Acta Arith. 103 (2002), 97-118.
  10. Z.-X. Chen, Elliptic curve analogue of Legendre sequences, Monatsh. Math. 154 (2008), 1-10.
  11. Z. Chen, S. Li and G. Xiao, Construction of pseudorandom binary se- quences from elliptic curves by using the discrete logarithms, in: Se- quences and their applications -SETA 2006, LNCS 4086, Springer, 2006; pp. 285-294.
  12. T. Cochrane and J. C. Peral, An asymptotic formula for a trigonometric sum of Vinogradov, J. Number Theory 91 (2001), 1-19.
  13. S. D. Cohen, Primitive polynomials over small fields, in: Finite Fields and Applications, Seventh International Conference, Toulouse, 2003, eds. G. Mullen et al., LNCS 2948, Springer, Berlin, 2006; pp. 293-307.
  14. S. D. Cohen, The explicit construction of irreducible polynomials over finite fields, Designs Codes Cryptogr. 2 (1992), 169-174.
  15. H. Feistel, W. A. Notz and J. L. Smith, Some cryptographic techniques for machine -to-machine data communications, Proc. IEEE 63 (1975), 1545-1554.
  16. J. Folláth, Construction of pseudorandom binary sequences using addi- tive characters over GF (2 k ), Period. Math. Hungar. 57 (2008), 73-81.
  17. J. Folláth, Construction of pseudorandom binary sequences using ad- ditive characters over GF (2 k ). II, Period. Math. Hungar. 60 (2010), 127-135.
  18. G. Gong, Character Sums and Polyphase Sequence Families with Low Correlation, Discrete Fourier Transform (DFT), and Ambiguty, in: Fi- nite Fields and Their Applications, Radon Series on Computational and Applied Mathematics 11, eds. C. Pascale et al., 2013, de Gruyter, Berlin; 1-42.
  19. L. Goubin, C. Mauduit and A. Sárközy, Construction of large families of pseudorandom binary sequences, J. Number Theory 106 (2004), 56-69.
  20. K. Gyarmati, On a family of pseudorandom binary sequences, Period. Math. Hungar. 49 (2004), 45-63.
  21. K. Gyarmati, Concatenation of pseudorandom binary sequences, Period. Math. Hungar. 58 (2009), 99-120.
  22. K. Gyarmati, On the complexity of a family related to the Legendre sym- bol, Period. Math. Hungar. 58 (2009), 209-215.
  23. S. Huczynska, Existence results for finite field polynomials with special properties, in: Finite Fields and Their Applications, Character Sums and Polynomials, Radon Series on Computational and Applied Mathematics 11, eds.: P. Charpin et al., 2013, de Gruyter, Berlin, 65-87.
  24. J. Kam and G. Davida, Structured design of substitution-permutation encryption networks, IEEE Transactions on Computers 28 (1979), 747- 753.
  25. Y. Kohayakawa, C. Mauduit, C. G. Moreira and V. Rödl, Measures of pseudorandomness for finite sequences: minimum and typical values, Proceedings of WORDS'03, TUCS Gen. Publ. 27, Turku Cent. Comput. Sci., Turku, 2003, 159-169.
  26. M. K. Kyureghyan, Recurrent methods for constructing irreducible poly- nomials over F q of odd characterics, I, II, Finite Fields Appl. 9 (2003), 39-58; 12 (2006), 357-378.
  27. H. N. Liu, A family of pseudorandom binary sequences constructed by the multiplicative inverse, Acta Arith. 130 (2007), 167-180.
  28. H. Liu, A large family of pseudorandom binary lattices, Proc. Amer. Math. Soc. 137 (2009), 793-803.
  29. H. Liu, New pseudorandom sequences constructed by quadratic residues and Lehmer numbers, Proc. Amer. Math. Soc. 135 (2007), 1309-1318.
  30. H. Liu, New pseudorandom sequences constructed using multiplicative inverses, Acta Arith. 125 (2006), 11-19.
  31. C. Mauduit, J. Rivat and A. Sárközy, Construction of pseudorandom binary sequences using additive characters, Monatsh. Math. 141 (2004), 197-208.
  32. C. Mauduit and A. Sárközy, Construction of pseudorandom binary se- quences by using the multiplicative inverse, Acta Math. Hungar. 108 (2005), 239-252.
  33. C. Mauduit and A. Sárközy, Family Complexity and VC-dimension, in: Ahlswede Festschrift, eds. H. Aydinian et al., LNCS 7777, Springer, Berlin, 2013; pp. 346-363.
  34. C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences I: Measures of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365-377.
  35. A. Menezes, P. C. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRS Press, Boca Raton, 1997.
  36. L. Mérai, A construction of pseudorandom binary sequences using both additive and multiplicative characters, Acta Arith. 139 (2009), 241-252.
  37. L. Mérai, A construction of pseudorandom binary sequences using ratio- nal functions, Unif. Distrib. Theory 4 (2009), 35-49.
  38. L. Mérai, Construction of large families of pseudorandom binary se- quences, Ramanujan J. 18 (2009), 341-349.
  39. A. Sárközy, A finite pseudorandom binary sequence, Studia Sci. Math. Hungar. 38 (2001), 377-384.
  40. V. Tóth, Collision and avalanche effect in families of pseudorandom binary sequences, Period. Math. Hungar. 55 (2007), 185-196.
  41. V. Tóth, The study of collision and avalanche effect in a family of pseu- dorandom binary sequences, Period. Math. Hungar. 59 (2009), 1-8.
  42. M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Ba- sic Notions, in: Mathematical Surveys and Monographs, Vol. 139, AMS, 2007.
  43. I. M. Vinogradov, Elements of Number Theory, Dover 1954.
  44. A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Act. Sci. Ind. 1041, Hermann, Paris, 1948.