Academia.eduAcademia.edu

Outline

Many Faces of Logic

2009

Abstract

In this paper we present logic from various perspectives, starting from the standard way typically taught in an undergraduate course. We expose the relationship with other mathematical structures, namely closure relations, closure operators, coalgebras and bialgebras.

References (9)

  1. W.J. Blok and D. Pigozzi. Algebraizable logics. Memoirs of the American Mathematical Society, American Mathematical Society, Providence, 77(396):78, 1989.
  2. Fiadeiro, J. and Sernadas, A.: Structuring theories on consequence, in D. Sannella and A. Tarlecki (eds.), Recent Trends in Data Type Specification, Lecture Notes in Comput. Sci. 332, Springer-Verlag, New York, 1988, pp. 44-72.
  3. Goguen, J. A. and Burstall, R. M.: Institutions: Abstract model theory for specification and programming, J. Assoc. Comput. Mach. 39(1) (1992), 95-146.
  4. H.P. Gumm.: Functors for coalgebras. Algebra Universalis, 45(2-3):135-147, 2001. Conference on Lattices and Universal Algebra (Szeged, 1998).
  5. J. MacDonald and M. Sobral. Aspects of monads. In Categorical foundations, volume 97 of Encyclopedia Math. Appl., pages 213-268. Cambridge Univ. Press, Cambridge, 2004.
  6. M. Mahmoudi, C. Schubert and W. Tholen. Universality of coproducts in categories of lax algebras. Appl. Categ. Struct., 14(3):243-249, 2006.
  7. A. Palmigiano. Abstract logics as dialgebras. Electr. Notes Theor. Comput. Sci., 65(1), 2002.
  8. C. Schubert and G.J. Seal.: Extensions in the theory of lax algebras. Theory Appl. Categ., 21:No. 7, 118-151, 2008.
  9. R. Wójcicki. Theory of logical caculi. Basic theory of consequence operations. Synthese Library, 199. Dordrecht etc.: Kluwer Academic Publishers., 1988.