Academia.eduAcademia.edu

Outline

The Ethics of AI in Health Care: An Updated Mapping Review

2024

Abstract

Artificial intelligence's impact on healthcare is undeniable. What is less clear is whether it will be ethically justifiable. Just as we know that AI can be used to diagnose disease, predict risk, develop personalized treatment plans, monitor patients remotely, or automate triage, we also know that it can pose significant threats to patient safety and the reliability (or trustworthiness) of the healthcare sector as a whole. These ethical risks arise from (a) flaws in the evidence base of healthcare AI (epistemic concerns); (b) the potential of AI to transform fundamentally the meaning of health, the nature of healthcare, and the practice of medicine (normative concerns); and (c) the 'black box' nature of the AI development pipeline, which undermines the effectiveness of existing accountability mechanisms (traceability concerns). In this chapter, we systematically map (a)-(c) to six different levels of abstraction: individual, interpersonal, group, institutional, sectoral, and societal. The aim is to help policymakers, regulators, and other high-level stakeholders delineate the scope of regulation and other 'softer' Governing measures for AI in healthcare. We hope that by doing so, we may enable global healthcare systems to capitalize safely and reliably on the many life-saving and improving benefits of healthcare AI.

FAQs

sparkles

AI

What ethical issues arise from inconclusive evidence in AI healthcare diagnostics?add

Inadequate dataset quality can lead to misdiagnoses, affecting patient safety—e.g., faulty smartwatch readings can misdiagnose arrhythmias. Such systemic failures may disproportionately impact marginalized groups, exacerbating healthcare inequalities.

How does the use of generative AI transform patient-physician relationships?add

Generative AI risks displacing clinicians' roles, potentially undermining trust and the quality of patient care. It blurs the lines between algorithm-driven decisions and human empathy, which is crucial for effective healthcare.

What impacts do algorithmic biases have on healthcare equity?add

AI models trained on biased datasets can generate discriminatory outcomes, particularly for underrepresented groups. For instance, cervical cancer risk predictions can misqualify specific ethnic groups’ health, leading to systemic healthcare disparities.

When did notable healthcare guidelines for AI ethics emerge?add

By 2021, significant guidelines were issued, including the FDA's AI/ML software action plan and WHO's governance guidance. These developments reflect growing recognition of regulatory needs amidst rapid technological advancements.

Why is traceability an ethical concern in AI system deployments?add

Lack of clear responsibility attribution complicates accountability for negative AI outcomes, as seen with clinical decision support systems. This opacity can undermine trust in healthcare providers and the overall system.

References (107)

  1. Abhari, S., Fatahi, S., Saragadam, A., Chumachenko, D., & Pelegrini Morita, P. (2024). A Road Map of Prompt Engineering for ChatGPT in Healthcare: A Perspective Study. In J. Mantas, A. Hasman, G. Demiris, K. Saranto, M. Marschollek, T. N. Arvanitis, I. Ognjanović, A. Benis, P. Gallos, E. Zoulias, & E. Andrikopoulou (Eds.), Studies in Health Technology and Informatics. IOS Press. https://doi.org/10.3233/SHTI240578
  2. Abràmoff, M. D., Tarver, M. E., Loyo-Berrios, N., Trujillo, S., Char, D., Obermeyer, Z., Eydelman, M. B., Foundational Principles of Ophthalmic Imaging and Algorithmic Interpretation Working Group of the Collaborative Community for Ophthalmic Imaging Foundation, Washington, D.C., & Maisel, W. H. (2023). Considerations for addressing bias in artificial intelligence for health equity. Npj Digital Medicine, 6(1), 170. https://doi.org/10.1038/s41746-023-00913-9
  3. Ahmad, M. A., & Eckert, C. M. (2023). Show Your Work: Responsible Model Reporting in Health Care Artificial Intelligence. Surgical Clinics of North America, 103(2), e1-e11. Scopus. https://doi.org/10.1016/j.suc.2023.03.002
  4. Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H. A., Al Yami, M. S., Al Harbi, S., & Albekairy, A. M. (2023). Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Medical Education, 23(1), 689. https://doi.org/10.1186/s12909-023-04698-z
  5. Amugongo, L. M., Bidwell, N. J., & Corrigan, C. C. (2023). Invigorating Ubuntu Ethics in AI for healthcare: Enabling equitable care. 583-592. Scopus. https://doi.org/10.1145/3593013.3594024
  6. Aquino, Y. S. J., Carter, S. M., Houssami, N., Braunack-Mayer, A., Win, K. T., Degeling, C., Wang, L., & Rogers, W. A. (2023). Practical, epistemic and normative implications of algorithmic bias in healthcare artificial intelligence: A qualitative study of multidisciplinary expert perspectives. Journal of Medical Ethics. Scopus. https://doi.org/10.1136/jme-2022-108850
  7. Armitage, R. C. (2024). Digital health technologies: Compounding the existing ethical challenges of the 'right' not to know. Journal of Evaluation in Clinical Practice, 30(5), 774-779. Scopus. https://doi.org/10.1111/jep.13980
  8. Arnold, M. H. (2021). Teasing out Artificial Intelligence in Medicine: An Ethical Critique of Artificial Intelligence and Machine Learning in Medicine. Journal of Bioethical Inquiry, 18(1), 121-139. Scopus. https://doi.org/10.1007/s11673-020-10080-1
  9. Baerøe, K., Gundersen, T., Henden, E., & Rommetveit, K. (2022). Can medical algorithms be fair? Three ethical quandaries and one dilemma. BMJ Health and Care Informatics, 29(1). Scopus. https://doi.org/10.1136/bmjhci- 2021-100445
  10. Bak, M., Madai, V. I., Fritzsche, M.-C., Mayrhofer, M. Th., & McLennan, S. (2022). You Can't Have AI Both Ways: Balancing Health Data Privacy and Access Fairly. Frontiers in Genetics, 13, 929453. https://doi.org/10.3389/fgene.2022.929453
  11. Baker, S. A. (2022). Alt. Health Influencers: How wellness culture and web culture have been weaponised to promote conspiracy theories and far-right extremism during the COVID-19 pandemic. European Journal of Cultural Studies, 25(1), 3-24.
  12. Banja, J. D., Hollstein, R. D., & Bruno, M. A. (2022). When Artificial Intelligence Models Surpass Physician Performance: Medical Malpractice Liability in an Era of Advanced Artificial Intelligence. Journal of the American College of Radiology, 19(7), 816-820. Scopus. https://doi.org/10.1016/j.jacr.2021.11.014
  13. Bartlett, B. (2023). The possibility of AI-induced medical manslaughter: Unexplainable decisions, epistemic vices, and a new dimension of moral luck. Medical Law International, 23(3), 241-270. Scopus. https://doi.org/10.1177/09685332231193944
  14. Baumgartner, R., Arora, P., Bath, C., Burljaev, D., Ciereszko, K., Custers, B., Ding, J., Ernst, W., Fosch-Villaronga, E., Galanos, V., Gremsl, T., Hendl, T., Kropp, C., Lenk, C., Martin, P., Mbelu, S., Morais Dos Santos Bruss, S., Napiwodzka, K., Nowak, E., … Williams, R. (2023). Fair and equitable AI in biomedical research and healthcare: Social science perspectives. Artificial Intelligence in Medicine, 144, 102658. https://doi.org/10.1016/j.artmed.2023.102658
  15. Bekbolatova, M., Mayer, J., Ong, C. W., & Toma, M. (2024). Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives. Healthcare, 12(2), 125. https://doi.org/10.3390/healthcare12020125
  16. Bélisle-Pipon, J.-C., Couture, V., Roy, M.-C., Ganache, I., Goetghebeur, M., & Cohen, I. G. (2021). What Makes Artificial Intelligence Exceptional in Health Technology Assessment? Frontiers in Artificial Intelligence, 4, 736697. https://doi.org/10.3389/frai.2021.736697
  17. Birch, J., Creel, K. A., Jha, A. K., & Plutynski, A. (2022). Clinical decisions using AI must consider patient values. Nature Medicine, 28(2), 229-232. https://doi.org/10.1038/s41591-021-01624-y
  18. Blease, C. R., Locher, C., Gaab, J., Hägglund, M., & Mandl, K. D. (2024). Generative artificial intelligence in primary care: An online survey of UK general practitioners. BMJ Health & Care Informatics, 31(1). https://doi.org/10.1136/bmjhci-2024-101102
  19. Bouaud, J., Spano, J.-P., Lefranc, J.-P., Cojean-Zelek, I., Blaszka-Jaulerry, B., Zelek, L., Durieux, A., Tournigand, C., Rousseau, A., Vandenbussche, P.-Y., S&#233, & Roussi, B. (2015). Physicians' Attitudes Towards the Advice of a Guideline-Based Decision Support System: A Case Study With OncoDoc2 in the Management of Breast Cancer Patients. MEDINFO 2015: eHealth-Enabled Health, 264-269. https://doi.org/10.3233/978-1- 61499-564-7-264
  20. Bürger, V. K., Amann, J., Bui, C. K. T., Fehr, J., & Madai, V. I. (2024). The unmet promise of trustworthy AI in healthcare: Why we fail at clinical translation. Frontiers in Digital Health, 6. Scopus. https://doi.org/10.3389/fdgth.2024.1279629
  21. Cabitza, F., Rasoini, R., & Gensini, G. F. (2017). Unintended Consequences of Machine Learning in Medicine. JAMA, 318(6), 517. https://doi.org/10.1001/jama.2017.7797
  22. Capasso, M., & Umbrello, S. (2022). Responsible nudging for social good: New healthcare skills for AI-driven digital personal assistants. Medicine, Health Care and Philosophy, 25(1), 11-22. Scopus. https://doi.org/10.1007/s11019- 021-10062-z
  23. Čartolovni, A., Tomičić, A., & Lazić Mosler, E. (2022). Ethical, legal, and social considerations of AI-based medical decision-support tools: A scoping review. International Journal of Medical Informatics, 161, 104738. https://doi.org/10.1016/j.ijmedinf.2022.104738
  24. Challen, R., Denny, J., Pitt, M., Gompels, L., Edwards, T., & Tsaneva-Atanasova, K. (2019). Artificial intelligence, bias and clinical safety. BMJ Quality & Safety, 28(3), 231-237. https://doi.org/10.1136/bmjqs-2018-008370
  25. Char, D. S., Abràmoff, M. D., & Feudtner, C. (2020). Identifying Ethical Considerations for Machine Learning Healthcare Applications. The American Journal of Bioethics, 20(11), 7-17. https://doi.org/10.1080/15265161.2020.1819469
  26. Chen, A., Wang, C., & Zhang, X. (2023). Reflection on the equitable attribution of responsibility for artificial intelligence-assisted diagnosis and treatment decisions. Intelligent Medicine, 3(2), 139-143. Scopus. https://doi.org/10.1016/j.imed.2022.04.002
  27. Chen, I. Y., Pierson, E., Rose, S., Joshi, S., Ferryman, K., & Ghassemi, M. (2021). Ethical Machine Learning in Healthcare. Annual Review of Biomedical Data Science, 4, 123-144. Scopus. https://doi.org/10.1146/annurev- biodatasci-092820-114757
  28. Chen, Y., & Esmaeilzadeh, P. (2024). Generative AI in Medical Practice: In-Depth Exploration of Privacy and Security Challenges. Journal of Medical Internet Research, 26, e53008. https://doi.org/10.2196/53008
  29. Cheney-Lippold, J. (2019). We are data: Algorithms and the making of our digital selves (First published in paperback). New York University Press.
  30. Choudhury, A. (2022). Factors influencing clinicians' willingness to use an AI-based clinical decision support system. Frontiers in Digital Health, 4, 920662. https://doi.org/10.3389/fdgth.2022.920662
  31. Choudhury, A., & Chaudhry, Z. (2024). Large Language Models and User Trust: Consequence of Self-Referential Learning Loop and the Deskilling of Health Care Professionals. Journal of Medical Internet Research, 26, e56764. https://doi.org/10.2196/56764
  32. Ciliberti, R., Schiavone, V., & Alfano, L. (2023). Artificial intelligence and the caring relationship: Ethical profiles. Medicina Historica, 7. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85162142171&partnerID=40&md5=fb67dfb27da5a1c62fe59541fd2aee68
  33. d'Elia, A., Gabbay, M., Rodgers, S., Kierans, C., Jones, E., Durrani, I., Thomas, A., & Frith, L. (2022). Artificial intelligence and health inequities in primary care: A systematic scoping review and framework. Family Medicine and Community Health, 10(Suppl 1), e001670. https://doi.org/10.1136/fmch-2022-001670
  34. Dalton-Brown, S. (2020). The Ethics of Medical AI and the Physician-Patient Relationship. Cambridge Quarterly of Healthcare Ethics, 29(1), 115-121. https://doi.org/10.1017/S0963180119000847
  35. De Angelis, L., Baglivo, F., Arzilli, G., Privitera, G. P., Ferragina, P., Tozzi, A. E., & Rizzo, C. (2023). ChatGPT and the rise of large language models: The new AI-driven infodemic threat in public health. Frontiers in Public Health, 11, 1166120. https://doi.org/10.3389/fpubh.2023.1166120
  36. de Boer, B., & Kudina, O. (2021). What is morally at stake when using algorithms to make medical diagnoses? Expanding the discussion beyond risks and harms. Theoretical Medicine and Bioethics, 42(5-6), 245-266. https://doi.org/10.1007/s11017-021-09553-0
  37. De Togni, G., Erikainen, S., Chan, S., & Cunningham-Burley, S. (2021). What makes AI 'intelligent' and 'caring'? Exploring affect and relationality across three sites of intelligence and care. Social Science and Medicine, 277. Scopus. https://doi.org/10.1016/j.socscimed.2021.113874
  38. DeCamp, M., & Lindvall, C. (2020). Latent bias and the implementation of artificial intelligence in medicine. Journal of the American Medical Informatics Association, 27(12), 2020-2023. https://doi.org/10.1093/jamia/ocaa094
  39. Desai, P., & Rubin, J. (2024, September 23). Where do Healthcare Budgets Match AI Hype? A 10-Year Lookback of Funding Data. Medium. https://flarecapitalpartners.medium.com/where-do-healthcare-budgets-match-ai-hype- a-10-year-lookback-of-funding-data-783d52010e29
  40. Dionne, É. (2020). Algorithmic Mediation, the Digital Era, and Healthcare Practices: A Feminist New Materialist Analysis. Global Media Journal: Canadian Edition, 12(1).
  41. DuFault, B. L., & Schouten, J. W. (2020). Self-quantification and the datapreneurial consumer identity. Consumption Markets & Culture, 23(3), 290-316. https://doi.org/10.1080/10253866.2018.1519489
  42. Elendu, C., Amaechi, D. C., Elendu, T. C., Jingwa, K. A., Okoye, O. K., John Okah, M., Ladele, J. A., Farah, A. H., & Alimi, H. A. (2023). Ethical implications of AI and robotics in healthcare: A review. Medicine (United States), 102(50), E36671. Scopus. https://doi.org/10.1097/MD.0000000000036671
  43. Elias, A. S., & Gill, R. (2018). Beauty surveillance: The digital self-monitoring cultures of neoliberalism. European Journal of Cultural Studies, 21(1), 59-77.
  44. Ennis-O'Connor, M., & O'Connor, W. T. (2024). Charting the future of patient care: A strategic leadership guide to harnessing the potential of artificial intelligence. Healthcare Management Forum, 37(4), 290-295. Scopus. https://doi.org/10.1177/08404704241235893
  45. Fairfield, J., & Reynolds, N. (2022). Griswold for Google: Algorithmic Determinism and Decisional Privacy. Southern Journal of Philosophy, 60(1), 5-37. Scopus. https://doi.org/10.1111/sjp.12454
  46. Felder, R. M. (2021). Coming to Terms with the Black Box Problem: How to Justify AI Systems in Health Care. Hastings Center Report, 51(4), 38-45. Scopus. https://doi.org/10.1002/hast.1248
  47. Flores, L., Kim, S., & Young, S. D. (2023). Addressing bias in artificial intelligence for public health surveillance. Journal of Medical Ethics. Scopus. https://doi.org/10.1136/jme-2022-108875
  48. Floridi, L. (2008). The Method of Levels of Abstraction. Minds and Machines, 18, 303-329. https://doi.org/10.1007/s11023-008-9113-7
  49. Floridi, L. (2019). Translating Principles into Practices of Digital Ethics: Five Risks of Being Unethical. Philosophy & Technology, 32(2), 185-193. https://doi.org/10.1007/s13347-019-00354-x
  50. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People-An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28(4), 689-707. https://doi.org/10.1007/s11023-018-9482-5
  51. Fournier-Tombs, E., & McHardy, J. (2023). A Medical Ethics Framework for Conversational Artificial Intelligence. Journal of Medical Internet Research, 25, e43068. https://doi.org/10.2196/43068
  52. Freitas, A. T. (2024). Data-Driven Approaches in Healthcare: Challenges and Emerging Trends. In H. Sousa Antunes, P. M. Freitas, A. L. Oliveira, C. Martins Pereira, E. Vaz De Sequeira, & L. Barreto Xavier (Eds.), Multidisciplinary Perspectives on Artificial Intelligence and the Law (Vol. 58, pp. 65-80). Springer International Publishing. https://doi.org/10.1007/978-3-031-41264-6_4
  53. Gaeta, A. (2023). Diagnostic advertisements: The phantom disabilities created by social media surveillance. First Monday.
  54. Graham, M. (2023). Data for sale: Trust, confidence and sharing health data with commercial companies. Journal of Medical Ethics, 49(7), 515-522. Scopus. https://doi.org/10.1136/medethics-2021-107464
  55. Grote, T., & Berens, P. (2020). On the ethics of algorithmic decision-making in healthcare. Journal of Medical Ethics, 46(3), 205-211. https://doi.org/10.1136/medethics-2019-105586
  56. Grote, T., & Keeling, G. (2022). On algorithmic fairness in medical practice. Cambridge Quarterly of Healthcare Ethics, 31(1), 83-94.
  57. Habli, I., Lawton, T., & Porter, Z. (2020). Artificial intelligence in health care: Accountability and safety. Bulletin of the World Health Organization, 98(4), 251-256. https://doi.org/10.2471/BLT.19.237487
  58. Harrer, S. (2023). Attention is not all you need: The complicated case of ethically using large language models in healthcare and medicine. eBioMedicine, 90, 104512. https://doi.org/10.1016/j.ebiom.2023.104512
  59. Holzmeyer, C. (2021). Beyond 'AI for Social Good' (AI4SG): Social transformations-not tech-fixes-for health equity. Interdisciplinary Science Reviews, 46(1-2), 94-125. https://doi.org/10.1080/03080188.2020.1840221
  60. Huang, P.-H., Kim, K.-H., & Schermer, M. (2022). Ethical Issues of Digital Twins for Personalized Health Care Service: Preliminary Mapping Study. Journal of Medical Internet Research, 24(1). Scopus. https://doi.org/10.2196/33081
  61. Iqbal, J. D., Krauthammer, M., & Biller-Andorno, N. (2022). The Use and Ethics of Digital Twins in Medicine. Journal of Law, Medicine & Ethics, 50(3), 583-596. https://doi.org/10.1017/jme.2022.97
  62. Jayakumar, P., Oude Nijhuis, K. D., Oosterhoff, J. H. F., & Bozic, K. J. (2023). Value-based Healthcare: Can Generative Artificial Intelligence and Large Language Models be a Catalyst for Value-based Healthcare? Clinical Orthopaedics and Related Research, 481(10), 1890-1894. Scopus. https://doi.org/10.1097/CORR.0000000000002854
  63. Jongepier, F., & Keymolen, E. (2022). Explanation and Agency: Exploring the normative-epistemic landscape of the "Right to Explanation". Ethics and Information Technology, 24(4). Scopus. https://doi.org/10.1007/s10676-022- 09654-x
  64. Juengst, E., McGowan, M. L., Fishman, J. R., & Settersten Jr., R. A. (2016). From "Personalized" to "Precision" Medicine: The Ethical and Social Implications of Rhetorical Reform in Genomic Medicine. Hastings Center Report, 46(5), 21-33. https://doi.org/10.1002/hast.614
  65. Karpathakis, K., Morley, J., & Floridi, L. (2024). A Justifiable Investment in AI for Healthcare: Aligning Ambition with Reality. Minds and Machines, 34(4), 38. https://doi.org/10.1007/s11023-024-09692-y
  66. Kasperbauer, T. J. (2021). Conflicting roles for humans in learning health systems and AI-enabled healthcare. 27(3), 537-542. Scopus. https://doi.org/10.1111/jep.13510
  67. Kerasidou, C. (Xaroula), Kerasidou, A., Buscher, M., & Wilkinson, S. (2022). Before and beyond trust: Reliance in medical AI. Journal of Medical Ethics, 48(11), 852-856. https://doi.org/10.1136/medethics-2020-107095
  68. Kim, H., & Xie, B. (2017). Health literacy in the eHealth era: A systematic review of the literature. Patient Education and Counseling, 100(6), 1073-1082. https://doi.org/10.1016/j.pec.2017.01.015
  69. Launer, J. (2024). John Launer: Faces or candlesticks? Why we need continuity in teams. BMJ, q1323. https://doi.org/10.1136/bmj.q1323
  70. Lett, E., & La Cava, W. G. (2023). Translating intersectionality to fair machine learning in health sciences. Nature Machine Intelligence, 5(5), 476-479. Scopus. https://doi.org/10.1038/s42256-023-00651-3
  71. Liu, M., Ning, Y., Teixayavong, S., Mertens, M., Xu, J., Ting, D. S. W., Cheng, L. T.-E., Ong, J. C. L., Teo, Z. L., Tan, T. F., RaviChandran, N., Wang, F., Celi, L. A., Ong, M. E. H., & Liu, N. (2023). A translational perspective towards clinical AI fairness. Npj Digital Medicine, 6(1). Scopus. https://doi.org/10.1038/s41746-023-00918-4
  72. Luciano, F. (2024). Hypersuasion -On AI's Persuasive Power and How to Deal with It. Philosophy & Technology, 37(2), 64, s13347-024-00756-6. https://doi.org/10.1007/s13347-024-00756-6
  73. Martinez-Martin, N., Luo, Z., Kaushal, A., Adeli, E., Haque, A., Kelly, S. S., Wieten, S., Cho, M. K., Magnus, D., Fei-Fei, L., Schulman, K., & Milstein, A. (2021). Ethical issues in using ambient intelligence in health-care settings. The Lancet Digital Health, 3(2), e115-e123. Scopus. https://doi.org/10.1016/S2589-7500(20)30275-2
  74. Mathiesen, T., & Broekman, M. (2022). Machine Learning and Ethics. In V. E. Staartjes, L. Regli, & C. Serra (Eds.), Machine Learning in Clinical Neuroscience (Vol. 134, pp. 251-256). Springer International Publishing. https://doi.org/10.1007/978-3-030-85292-4_28
  75. McDougall, R. J. (2019). Computer knows best? The need for value-flexibility in medical AI. Journal of Medical Ethics, 45(3), 156-160. https://doi.org/10.1136/medethics-2018-105118
  76. Moodley, K. (2023). Artificial intelligence (AI) or augmented intelligence? How big data and AI are transforming healthcare: Challenges and opportunities. South African Medical Journal = Suid-Afrikaanse Tydskrif Vir Geneeskunde, 114(1), 22-26. Scopus. https://doi.org/10.7196/SAMJ.2024.v114i1.1631
  77. Morley, J., & Floridi, L. (2020). The Limits of Empowerment: How to Reframe the Role of mHealth Tools in the Healthcare Ecosystem. Science and Engineering Ethics, 26(3), 1159-1183. https://doi.org/10.1007/s11948-019- 00115-1
  78. Morley, J., Machado, C. C. V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., & Floridi, L. (2020). The ethics of AI in health care: A mapping review. Social Science & Medicine, 260, 113172. https://doi.org/10.1016/j.socscimed.2020.113172
  79. Mühlhoff, R. (2023). Predictive privacy: Collective data protection in the context of artificial intelligence and big data. Big Data and Society, 10(1). Scopus. https://doi.org/10.1177/20539517231166886
  80. Murdoch, B. (2021). Privacy and artificial intelligence: Challenges for protecting health information in a new era. BMC Medical Ethics, 22(1), 122. https://doi.org/10.1186/s12910-021-00687-3
  81. Murphy, K., Di Ruggiero, E., Upshur, R., Willison, D. J., Malhotra, N., Cai, J. C., Malhotra, N., Lui, V., & Gibson, J. (2021). Artificial intelligence for good health: A scoping review of the ethics literature. BMC Medical Ethics, 22(1). Scopus. https://doi.org/10.1186/s12910-021-00577-8
  82. Ngiam, K. Y., & Khor, I. W. (2019). Big data and machine learning algorithms for health-care delivery. The Lancet Oncology, 20(5), e262-e273. https://doi.org/10.1016/S1470-2045(19)30149-4
  83. Ong, J. C. L., Chang, S. Y.-H., William, W., Butte, A. J., Shah, N. H., Chew, L. S. T., Liu, N., Doshi-Velez, F., Lu, W., Savulescu, J., & Ting, D. S. W. (2024). Ethical and regulatory challenges of large language models in medicine. The Lancet Digital Health, 6(6), e428-e432. https://doi.org/10.1016/S2589-7500(24)00061-X
  84. Ploug, T., & Holm, S. (2022). Right to Contest AI Diagnostics Defining Transparency and Explainability Requirements from a Patient's Perspective. In Artificial Intelligence in Medicine (pp. 227-238). Scopus. https://doi.org/10.1007/978-3-030-64573-1_267
  85. Pot, M., Kieusseyan, N., & Prainsack, B. (2021). Not all biases are bad: Equitable and inequitable biases in machine learning and radiology. Insights into Imaging, 12(1), 13. https://doi.org/10.1186/s13244-020-00955-7
  86. Pruski, M. (2024). What does it mean for a clinical AI to be just: Conflicts between local fairness and being fit-for- purpose? Journal of Medical Ethics, jme-2023-109675. https://doi.org/10.1136/jme-2023-109675
  87. Quinn, T. P., Senadeera, M., Jacobs, S., Coghlan, S., & Le, V. (2021). Trust and medical AI: The challenges we face and the expertise needed to overcome them. Journal of the American Medical Informatics Association, 28(4), 890-894. https://doi.org/10.1093/jamia/ocaa268
  88. Racine, E., Boehlen, W., & Sample, M. (2019). Healthcare uses of artificial intelligence: Challenges and opportunities for growth. Healthcare Management Forum, 32(5), 272-275. https://doi.org/10.1177/0840470419843831
  89. Roetman, S. (2020). Self-tracking 'femtech': Commodifying & disciplining the fertile female body. AoIR Selected Papers of Internet Research.
  90. Rosenfeld, A., Benrimoh, D., Armstrong, C., Mirchi, N., Langlois-Therrien, T., Rollins, C., Tanguay-Sela, M., Mehltretter, J., Fratila, R., Israel, S., Snook, E., Perlman, K., Kleinerman, A., Saab, B., Thoburn, M., Gabbay, C., & Yaniv-Rosenfeld, A. (2019). Big Data Analytics and AI in Mental Healthcare (arXiv:1903.12071). arXiv. https://doi.org/10.48550/arXiv.1903.12071
  91. Rubeis, G. (2023). Liquid Health. Medicine in the age of surveillance capitalism. Social Science & Medicine, 322, 115810. https://doi.org/10.1016/j.socscimed.2023.115810
  92. Ruckenstein, M., & Schüll, N. D. (2017). The Datafication of Health. Annual Review of Anthropology, 46(Volume 46, 2017), 261-278. https://doi.org/10.1146/annurev-anthro-102116-041244
  93. Rudschies, C., & Schneider, I. (2024). Ethical, legal, and social implications (ELSI) of virtual agents and virtual reality in healthcare. Social Science & Medicine, 340, 116483. https://doi.org/10.1016/j.socscimed.2023.116483
  94. Rueda, J., Rodríguez, J. D., Jounou, I. P., Hortal-Carmona, J., Ausín, T., & Rodríguez-Arias, D. (2024). "Just" accuracy? Procedural fairness demands explainability in AI-based medical resource allocations. AI & SOCIETY, 39(3), 1411-1422. https://doi.org/10.1007/s00146-022-01614-9
  95. Saetra, H. S. (2022). First, They Came for the Old and Demented: Care and Relations in the Age of Artificial Intelligence and Social Robots. Human Arenas, 5(1), 25-43. Scopus. https://doi.org/10.1007/s42087-020-00125-7
  96. Shaw, J., Ali, J., Atuire, C. A., Cheah, P. Y., Español, A. G., Gichoya, J. W., Hunt, A., Jjingo, D., Littler, K., Paolotti, D., & Vayena, E. (2024). Research ethics and artificial intelligence for global health: Perspectives from the global forum on bioethics in research. BMC Medical Ethics, 25(1), 46. https://doi.org/10.1186/s12910-024-01044-w
  97. Sterckx, S., Rakic, V., Cockbain, J., & Borry, P. (2016). "You hoped we would sleep walk into accepting the collection of our data": Controversies surrounding the UK care.data scheme and their wider relevance for biomedical research. Medicine, Health Care and Philosophy, 19(2), 177-190. https://doi.org/10.1007/s11019-015-9661-6
  98. Stevens, M., & Beaulieu, A. (2024). A careful approach to artificial intelligence: The struggles with epistemic responsibility of healthcare professionals. Information Communication and Society, 27(4), 719-734. Scopus. https://doi.org/10.1080/1369118X.2023.2289971
  99. Toma, A., Senkaiahliyan, S., Lawler, P. R., Rubin, B., & Wang, B. (2023). Generative AI could revolutionize health care-But not control is ceded to big tech. Nature, 624(7990), 36-38. https://doi.org/10.1038/d41586-023- 03803-y
  100. Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56. https://doi.org/10.1038/s41591-018-0300-7
  101. Tudor Hart, J. (1971). THE INVERSE CARE LAW. The Lancet, 297(7696), 405-412. https://doi.org/10.1016/S0140- 6736(71)92410-X
  102. Upadhyay, U., Gradisek, A., Iqbal, U., Dhar, E., Li, Y.-C., & Syed-Abdul, S. (2023). Call for the responsible artificial intelligence in the healthcare. BMJ Health & Care Informatics, 30(1), e100920. https://doi.org/10.1136/bmjhci- 2023-100920
  103. Vayena, E., & Tasioulas, J. (2016). The dynamics of big data and human rights: The case of scientific research. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2083), 20160129. https://doi.org/10.1098/rsta.2016.0129
  104. Wang, C., Liu, S., Yang, H., Guo, J., Wu, Y., & Liu, J. (2023). Ethical Considerations of Using ChatGPT in Health Care. Journal of Medical Internet Research, 25. Scopus. https://doi.org/10.2196/48009
  105. Weissglass, D. E. (2022). Contextual bias, the democratization of healthcare, and medical artificial intelligence in low- and middle-income countries. Bioethics, 36(2), 201-209. Scopus. https://doi.org/10.1111/bioe.12927
  106. Yu, K.-H., Healey, E., Leong, T.-Y., Kohane, I. S., & Manrai, A. K. (2024). Medical Artificial Intelligence and Human Values. New England Journal of Medicine, 390(20), 1895-1904. https://doi.org/10.1056/NEJMra2214183
  107. Zhang, J., & Zhang, Z. (2023). Ethics and governance of trustworthy medical artificial intelligence. BMC Medical Informatics and Decision Making, 23(1), 7. https://doi.org/10.1186/s12911-023-02103-9