Academia.eduAcademia.edu

Outline

Exploring a Novel Mexican Sign Language Lexicon Video Dataset

https://doi.org/10.3390/MTI7080083

Abstract

In Mexico, the incorporation of deaf people into education has been lacking since only 14% of the deaf population in the age group between 3 and 29 years access education with the support of a hearing aid. Additionally, those who have been incorporated frequently face inappropriate educational strategies which poorly develop the use of Mexican Sign Language (MSL) and therefore academical success and opportunities for insertion in the workplace are difficult. This research explores a novel mexican sign language lexicon video dataset containing the dynamical gestures most frequently used by MSL. Each gesture consists of a set of different versions of videos under uncontrolled conditions. MX-ITESO-100 data set is composed of a lexicon of 100 gestures and 5,000 videos from three participants with different grammatical elements. Additionally, the data set is evaluated in a two-step neural network model with an accuracy greater than 99%. and thus serves as a benchmark for future training ...

References (35)

  1. Mejía-Pérez, K.; Córdova-Esparza, D.M.; Terven, J.; Herrera-Navarro, A.M.; García-Ramírez, T.; Ramírez-Pedraza, A. Automatic Recognition of Mexican Sign Language Using a Depth Camera and Recurrent Neural Networks. Appl. Sci. 2022, 12, 5523.
  2. Dreuw, P.; Neidle, C.; Athitsos, V.; Sclaroff, S.; Ney, H. Benchmark Databases for Video-Based Automatic Sign Language Recognition. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08), Marrakech, Morocco, 26 May-1 June 2008; pp. 1115-1120.
  3. Athitsos, V.; Neidle, C.; Sclaroff, S.; Nash, J.; Stefan, A.; Yuan, Q.; Thangali, A. The American Sign Language Lexicon Video Dataset. In Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 23-28 June 2008; pp. 1-8.
  4. Sosa-Jiménez, C.O.; Ríos-Figueroa, H.V.; Rechy-Ramírez, E.J.; Marín-Hernández, A.; González-Cosío, A.L.S. Real-time Mexican Sign Language recognition. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 8-10 November 2017; pp. 1-6.
  5. Carmona-Arroyo, G.; Ríos-Figueroa, H.V.; Avendaño-Garrido, M.L. Mexican Sign-Language Static-Alphabet Recognition Using 3D Affine Invariants. In Machine Vision Inspection Systems, Volume 2: Machine Learning-Based Approaches; Wiley: Hoboken, NJ, USA, 2021; pp. 171-192.
  6. Espejel-Cabrera, J.; Cervantes, J.; García-Lamont, F.; Ruiz Castilla, J.S.; Jalili, L.D. Mexican sign language segmentation using color based neuronal networks to detect the individual skin color. Expert Syst. Appl. 2021, 183, 115295. [CrossRef]
  7. Ray, S. An Analysis of Computational Complexity and Accuracy of Two Supervised Machine Learning Algorithms-K-Nearest Neighbor and Support Vector Machine. In Data Management, Analytics and Innovation; Sharma, N., Chakrabarti, A., Balas, V.E., Martinovic, J., Eds.; Springer: Singapore, 2021; pp. 335-347.
  8. Papastratis, I.; Chatzikonstantinou, C.; Konstantinidis, D.; Dimitropoulos, K.; Daras, P. Artificial Intelligence Technologies for Sign Language. Sensors 2021, 21, 5843. [CrossRef] [PubMed]
  9. Plumlee, M. Pronouns in Mexican Sign Language. Work. Pap. Summer Inst. Linguist. 1995, 39, 81-92. [CrossRef]
  10. Hawayek, A.; Del Gratta, R.; Cappelli, G. A Bilingual Dictionary Mexican Sign Language-Spanish/Spanish-Mexican Sign Language. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10), Valletta, Malta, 17-23 May 2010; pp. 3055-3060.
  11. Serafin de Fleischmann, M.E.; Gonzalez Perez, R. Manos con voz. Diccionario de Lengua de Señas Mexicana; CONAPRED: Ciudad de México, Mexico, 2011.
  12. Forster, J.; Schmidt, C.; Koller, O.; Bellgardt, M.; Ney, H. Extensions of the Sign Language Recognition and Translation Corpus RWTH-PHOENIX-Weather. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), Reykjavik, Iceland, 26-31 May 2014; pp. 1911-1916.
  13. Huang, J.; Zhou, W.; Zhang, Q.; Li, H.; Li, W. Video-based Sign Language Recognition without Temporal Segmentation. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2-7 February 2018; Volume 32, pp. 2257-2264.
  14. Fregoso, J.; Gonzalez, C.I.; Martinez, G.E. Optimization of Convolutional Neural Networks Architectures Using PSO for Sign Language Recognition. Axioms 2021, 10, 139. [CrossRef]
  15. Alejandro, S.M.; Antonio, N.C.J. A real-time deep learning system for the translation of mexican signal language into text. In Proceedings of the 2021 Mexican International Conference on Computer Science (ENC), Morelia, Mexico, 9-11 August 2021; pp. 1-7.
  16. Srivastava, S.; Gangwar, A.; Mishra, R.; Singh, S. Sign Language Recognition System Using TensorFlow Object Detection API. In Advanced Network Technologies and Intelligent Computing; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2022; pp. 634-646.
  17. Bickford, J.A. Lexical Variation in Mexican Sign Language. Sign Lang. Stud. 1991, 72, 241-276. [CrossRef]
  18. Quinto-Pozos, D. Sign language contact and interference: ASL and LSM. Lang. Soc. 2008, 37, 161-189. [CrossRef]
  19. Faurot, K.; Dellinger, D.; Eatough, A.; Parkhurst, S. The identity of Mexican sign as a language. J. Lang. Surv. Rep. 2000, 1. Available online: https://www.sil.org/resources/archives/9069 (accessed on 18 August 2023)
  20. Cervantes, J.; García-Lamont, F.; Rodríguez-Mazahua, L.; Rendon, A.Y.; Chau, A.L. Recognition of Mexican Sign Language from Frames in Video Sequences. In Intelligent Computing Theories and Application; Springer: Cham, Switzerland, 2016; pp. 353-362.
  21. Solís, F.; Martínez, D.; Espinoza, O. Automatic Mexican Sign Language Recognition Using Normalized Moments and Artificial Neural Networks. Engineering 2016, 8, 733-740. [CrossRef]
  22. Staudemeyer, R.C.; Morris, E.R. Understanding LSTM -a tutorial into Long Short-Term Memory Recurrent Neural Networks. arXiv 2019, arXiv:1909.09586.
  23. Kurmanji, M.; Ghaderi, F. A Comparison of 2D and 3D Convolutional Neural Networks for Hand Gesture Recognition from RGB-D Data. In Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April-2 May 2019; pp. 2022-2027.
  24. Syed, F.; Sipio, R.D.; Sinervo, P. Bidirectional Long Short-Term Memory (BLSTM) neural networks for reconstruction of top-quark pair decay kinematics. arXiv 2019, arXiv:1909.01144.
  25. Li, H.; Wang, W. A Novel Re-weighting Method for Connectionist Temporal Classification. arXiv 2019, arXiv:1904.10619.
  26. Zhou, H.; gang Zhou, W.; Zhou, Y.; Li, H. Spatial-Temporal Multi-Cue Network for Continuous Sign Language Recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7-12 February 2020.
  27. Shah, A.A.; Venkateswara, H. Sparsity Regularization For Cold-Start Recommendation. arXiv 2022, arXiv:2201.10711.
  28. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2016; pp. 1800-1807.
  29. Mascarenhas, S.; Agarwal, M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification. In Proceedings of the 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), Bengaluru, India, 19-21 November 2021; Volume 1, pp. 96-99.
  30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.
  31. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
  32. Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2016; pp. 2261-2269.
  33. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946.
  34. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013.
  35. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.