Academia.eduAcademia.edu

Outline

Correlation of spin and velocity in granular gases

2008

Abstract

In a granular gas of rough particles the spin of a grain is correlated with its linear velocity. We develop an analytical theory to account for these correlations and compare its predictions to numerical simulations, using Direct Simulation Monte Carlo as well as Molecular Dynamics. The system is shown to relax from an arbitrary initial state to a quasi-stationary state, which is characterized by time-independent, finite correlations of spin and linear velocity. The latter are analysed systematically for a wide range of system parameters, including the coefficients of tangential and normal restitution as well as the moment of inertia of the particles. For most parameter values the axis of rotation and the direction of linear momentum are perpendicular like in a sliced tennis ball, while parallel orientation, like in a rifled bullet, occurs only for a small range of parameters. The limit of smooth spheres is singular: any arbitrarily small roughness unavoidably causes significant translation-rotation correlations, whereas for perfectly smooth spheres the rotational degrees of freedom are completely decoupled from the dynamic evolution of the gas.

References (49)

  1. I. Goldhirsch, Ann. Rev. Fluid Mech. 35, 267 (2003).
  2. A. Levy and H. Kalman, Handbook of Conveying and Handling of Particulate Solids (Elsevier, Amsterdam, 2001).
  3. R. Greenberg and A. Brahic, eds., Planetary Rings (Ari- zona Univ. Press., Tucson, 1984).
  4. T. Pöschel and S. Luding, eds., Granular Gases, vol. 564 of Lecture Notes in Physics (Springer, Berlin, 2001).
  5. T. Pöschel and N. V. Brilliantov, eds., Granular Gas Dy- namics, vol. 624 of Lecture Notes in Physics (Springer, Berlin, 2003).
  6. N. V. Brilliantov and T. Pöschel, Kinetic Theory of Gran- ular Gases (Oxford University Press, Oxford, 2004).
  7. S. McNamara and W. R. Young, Phys. Fluids A 4, 496 (1992).
  8. I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993).
  9. R. Brito and M. H. Ernst, Europhys. Lett. 43, 497 (1998).
  10. A. Goldshtein and M. Shapiro, J. Fluid Mech. 282, 75 (1995).
  11. T. P. C. van Noije and M. H. Ernst, Granular Matter 1, 57 (1998).
  12. S. E. Esipov and T. Pöschel, J. Stat. Phys. 86, 1385 (1997).
  13. J. J. Brey, D. Cubero, and M. J. Ruiz-Montero, Phys. Rev. E 59, 1256 (1999).
  14. P. Deltour and J.-L. Barrat, J. Physique I 7, 137 (1997).
  15. M. Huthmann, J. Orza, and R. Brito, Granular Matter 2, 189 (2000).
  16. N. V. Brilliantov and T. Pöschel, Phys. Rev. E 61, 2809 (2000).
  17. I. Goldhirsch, H. S. Noskowicz, and O. Bar-Lev, in [5], pp. 37-63.
  18. T. Pöschel, N. V. Brilliantov, and A. Formella, Phys. Rev. E 74, 041302 (2006).
  19. J. J. Brey, M. J. Ruiz-Montero, and R. Garcia-Rojo, Phys. Rev. E 60, 7174 (1999).
  20. J. J. Brey, M. J. Ruiz-Montero, D. Cubero, and R. Garcia-Rojo, Physics of Fluids 12, 876 (2000).
  21. N. V. Brilliantov and T. Pöschel, Phys. Rev. E 61, 1716 (2000).
  22. A. Santos and J. W. Dufty, Phys. Rev. Lett. 86, 4823 (2001).
  23. V. Garzo and J. M. Montanero, Phys. Rev. E 69, 021301 (2004).
  24. M. Huthmann and A. Zippelius, Phys. Rev. E 56, R6275 (1997).
  25. T. Aspelmeier, M. Huthmann, and A. Zippelius, in [4], p. 31.
  26. I. Goldhirsch, S. H. Noskowicz, and O. Bar-Lev, J. Phys. Chem. 109, 21449 (2005).
  27. T. Elperin and E. Golshtein, Physica A 247, 67 (1997).
  28. J. T. Jenkins and M. W. Richman, Physics of Fluids 28, 3485 (1985).
  29. C. K. K. Lun and S. B. Savage, J. Appl. Mech. Trans. ASME 54, 47 (1987).
  30. H. M. Jaeger, C. Liu, S. R. Nagel, and T. A. Witten, Europhys. Lett. 11, 619 (1990).
  31. S. Luding, Phys. Rev. E 52, 3416 (1995).
  32. J. T. Jenkins and M. Louge, Physics of Fluids 9 (10), 2835 (1997).
  33. S. G. Bardenhagen, J. U. Brackbill, and D. Sulsky, Phys. Rev. E 62, 3882 (2000).
  34. R. Cafiero, S. Luding, and H. J. Herrmann, Europhys. Lett. 60, 854 (2002).
  35. N. Mitarai, H. Hayakawa, and H. Nakanishi, Phys. Rev. Lett. 88, 174301 (2002).
  36. I. Goldhirsch, S. H. Noskowicz, and O. Bar-Lev, Phys. Rev. Lett. 95, 068002 (2005).
  37. N. V. Brilliantov, T. Pöschel, W. T. Kranz, and A. Zip- pelius, Phys. Rev. Lett. 98, 128001 (2007).
  38. N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Pöschel, Phys. Rev. E 53, 5382 (1996).
  39. T. Schwager and T. Pöschel, Phys. Rev. E 57, 650 (1998).
  40. R. Ramírez, N. V. Brilliantov, T. Schwager, and T. Pöschel, Phys. Rev. E 60, 4465 (1999).
  41. V. Becker, T. Schwager, and T. Pöschel, Phys. Rev. E 77, 011304 (2008).
  42. S. Luding, M. Huthmann, S. McNamara, and A. Zip- pelius, Phys. Rev. E 58, 3416 (1998).
  43. T. Pöschel, N. V. Brilliantov, and T. Schwager, Int. J. Mod. Phys. C 13, 1263 (2003).
  44. S. H. Noskowicz, O. Bar-Lev, D. Serero, and I. Gold- hirsch, Europhys. Lett. 79, 60001 (2007).
  45. G. A. Bird, Molecular Gas Dynamics and the Direct Sim- ulation of Gas Flows (Oxford University Press, 1994).
  46. T. Pöschel and T. Schwager, Computational Granular Dynamics (Springer, New York, 2005).
  47. B. Gayen and M. Alam, Phys. Rev. Lett. 1, 068002 (2008).
  48. J. J. Brey and D. Cubero, in Granular Gases, edited by T. Pöschel and S. Luding (Springer, Berlin, 2001), vol. 564 of Lecture Notes in Physics, p. 59.
  49. To be precise, although the mathematical operations in DSMC looks like a particle simulation, the particles in the simulation do not correspond to real particles. They are better considered as quanta of probability [48].