Academia.eduAcademia.edu

Outline

Quantum Networks For Open Science

2019, arXiv: Quantum Physics

https://doi.org/10.2172/1499146

Abstract

The United States Department of Energy convened the Quantum Networks for Open Science (QNOS) Workshop in September 2018. The workshop was primarily focused on quantum networks optimized for scientific applications with the expectation that the resulting quantum networks could be extended to lay the groundwork for a generalized network that will evolve into a quantum internet.

References (43)

  1. DOE-Office of Advanced Scientific Computing (ASCR), "ASCR workshop on quantum computing for science," https://prod-ng.sandia.gov/techlib-noauth/access- control.cgi/2015/155022r.pdf
  2. DOE -Office of Advanced Scientific Computing (ASCR) "ASCR report on a quantum computing testbed for science," https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/2017/QTSWReport. pdf
  3. DOE -Office of High Energy Physics (HEP), "Quantum sensing for HEP," https://arxiv.org/pdf/1803.11306.pdf
  4. DOE -Office of Basic Energy Sciences (BES), "Report of the basic energy sciences roundtable on opportunities for basic research for next-generation quantum systems," https://science.energy.gov/~/media/bes/pdf/reports/2018/Quantum_systems.pdf
  5. DOE -Office of Fusion Energy Sciences (FES), "Fusion energy sciences roundtable on quantum science," https://science.energy.gov/~/media/fes/pdf/workshop-reports/FES- QIS_report_final-2018-Sept14.pdf
  6. P. Wright, A. Lord, and L. Velasco, "The network capacity benefits of flexgrid," 17th Int. Conf. on Opt. Network. Des. and Model. (ONDM), Brest, 7-12 (2013). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6524911&isnumber=6524875
  7. DOE's Energy Sciences Network (ESnet) -http://es.net/about/
  8. A. V. Gorshkov, "Quantum sensing with atoms and photons," http://www.phy.anl.gov/npqi2018/talks/gorshkov.pdf
  9. P. Kómár, et al., "A quantum network of clocks," Nat. Phys. 10, 582-587 (2014).
  10. P. Kumar et al., "A quantum network of clocks,", https://arxiv.org/pdf/1310.6045.pdf
  11. D. Gottesman, T. Jennewein, and S. Croke, "Longer baseline telescopes using quantum repeaters," Phys. Rev. Lett. 109, 070503 (2012).
  12. E. T. Khabiboulline, J. Borregaard, K. De Greve, and M.D. Lukin, "Quantum-Assisted Telescope Arrays," arXiv:1809.03396.
  13. N. Otterstrom, R. C. Pooser, and B. J. Lawrie, "Nonlinear optical magnetometry with accessible in situ optical squeezing," Opt. Lett. 39, 6533-6536 (2014).
  14. A. Derevianko, and M. Pospelov, "Hunting for topological dark matter with atomic clocks," Nat. Phys. 10, 933 (2014).
  15. F. Della Valle et al., "The PVLAS experiment measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity," Eur. Phys. J. C 76, 24 (2016).
  16. M. Namazi, C. Kupchak, B. Jordaan, R. Shahrokhshahi, and E. Figueroa, "Ultralow Noise Room Temperature Quantum Memory for Polarization Qubits," Physical Review Applied 8, 034023 (2017).
  17. C. J. Moore, D.P. Mihaylov, A. Lasenby, and G. Gilmore, "Astrometric Search Method for Individually Resolvable Gravitational Wave Sources with Gaia," Phys. Rev. Lett. 119, 261102 (2017).
  18. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A, 59 4249 (1999); https://arxiv.org/pdf/quant-ph/9803017.pdf
  19. M. Caleffi, A. S. Cacciapuoti, and G. Bianchi, "Quantum internet: from communication to distributed computing!," https://arxiv.org/abs/1805.04360
  20. S. Barz et al., "Demonstration of blind quantum computing," Science 335, 303 (2012); https://arxiv.org/pdf/1110.1381.pdf
  21. J. F. Fitzsimons, "Private quantum computation: an introduction to blind quantum computing and related protocols," npj Quant. Info., 3 23, (2017).
  22. R. Alléaume et al., "Using quantum key distribution for cryptographic purposes: a survey," Theor. Comp. Sci., 560, Issue: P1, 62-81(2014); https://arxiv.org/pdf/quant- ph/0701168.pdf
  23. J. L. O'Brien, A. Furusawa, and Jelena Vučković, "Photonic quantum technologies," Nat. Photon. 3, 687 (2009); https://arxiv.org/abs/1003.3928
  24. Jean-François Labourdette, "Opaque and transparent networking," Optical Networks Magazine May/ June (2003)
  25. T. E Chapuran et al., "Optical networking for quantum key distribution and quantum communications," New J. Phys. 11, 105001 (2009); https://doi.org/10.1088/1367- 2630/11/10/10500
  26. R. J. Runser, et al., "Progress towards quantum communications networks: opportunities and challenges," Proc. SPIE Int. Soc. Opt. Eng., 6476, 64760I (2007). https://www.researchgate.net/publication/228780542_Progress_Toward_Quantum_Com munications_Networks_Opportunities_and_Challenges
  27. N. A. Peters, et al., "Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments," New J. Phys., 11, 045012 (2009); https://doi.org/10.1088/1367-2630/11/4/045012
  28. K. A. Patel et al., "Coexistence of high-bit-rate quantum key distribution and data on optical fiber," Phys. Rev. X 2, 041010 (2012);
  29. http://dx.doi.org/10.1103/PhysRevX.2.041010
  30. B. Qi, W. Zhu, L. Qian, and H.-K. Lo, "Feasibility of quantum key distribution through a dense wavelength division multiplexing network," New J. Phys. 12, 103042 (2010). https://doi.org/10.1088/1367-2630/12/10/103042
  31. R. Kumar, H. Qin, and R. Alléaume, "Coexistence of continuous variable QKD with intense DWDM classical channels", New J. Phys. 17, 043027 (2015);
  32. http://dx.doi.org/10.1088/1367-2630/17/4/043027
  33. C. Weedbrook, et al., "Gaussian Quantum Information," Rev. Mod. Phys. 84, 621 (2012); https://arxiv.org/pdf/1110.3234.pdf
  34. F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and Ph. Grangier, "Quantum Key distribution Using Gaussian-Modulated Coherent States", Nature 421, 238 (2003).
  35. G. Zhang, J. Wu, S. Yu, L. C. Kwek, J. B. Gong, W. B. Gao, Y. D. Chong, W. Ser, and A. Q. Liu, "An integrated photonic chip for continuous-variable quantum key distribution". In CLEO: Science and Innovations, pp. SM3O.3. Optical Society of America, (2017).
  36. J. Dias and T. C. Ralph, "Quantum repeaters using continuous-variable teleportation," Phys. Rev. A 95, 022312 (2017); https://arxiv.org/abs/1611.02794
  37. F. Furrer and W. J. Munro, "Repeaters for continuous-variable quantum communication", Phys. Rev. A 98, 032335 (2018).
  38. U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa "Hybrid discrete-and continuous-variable quantum information," Nat. Phys. volume 11, pages 713-719 (2015); https://arxiv.org/abs/1409.3719
  39. K. Huang, PhD Thesis, Ecole normale supérieure -ENS PARIS (2015). English. https://tel.archives-ouvertes.fr/tel-01661603/
  40. S. Takeda et al., "Entanglement Swapping between Discrete and Continuous Variables," Phys. Rev. Lett., 114, 100501 (2015); https://arxiv.org/abs/1411.1310
  41. N. T. Islam, et al., "Provably secure and high-rate quantum key distribution with time-bin qudits," Sci. Advan. 3, e1701491 (2017).
  42. R. Ramaswami, K. N. Sivarajan, G. H. Sasaki, Optical Networks: A Practical Perspective (Kindle Locations 10246-10250). Elsevier Science (reference). Kindle Edition
  43. H. J. Kimble, "The quantum internet," Nature 453, 1023-1030 (2008). https://arxiv.org/pdf/0806.4195.pdf 03:15 PM -04:45 PM Breakout Groups, Workshop Report 04:45 PM -05:00 PM Closing Remarks: Thomas Ndousse-Fetter