Academia.eduAcademia.edu

Outline

D2.4: Methods for interlinking knowledge graphs (V1.0)

2022, Zenodo (CERN European Organization for Nuclear Research)

Abstract

One of the key missions of the Polifonia project is to build and interlink knowledge graphs of European musical cultural heritage. These interconnected music knowledge graphs act as a data backbone for the project. This deliverable is centred around one of the ten Polifonia pilots: INTERLINK. The INTERLINK pilot is not bound to a specific institutional dataset, collection or use case; but rather summarises the common needs of all pilots of representing their data as music knowledge graphs, and finding meaningful connections among them. Existing work in the relevant areas of knowledge engineering, knowledge graph construction, and knowledge graph interlinking is promising but presents a number of pitfalls in its direct application to Polifonia from the point of view of achieving this knowledge graph building and interlinking: (a) existing knowledge engineering methodologies do not account for "in-between" knowledge graph construction processes that are not fully distributed nor local; (b) in an integrated vision of European musical cultural heritage through knowledge graphs, both musical content and its 'context' or metadata need to co-exist; and (c) no current techniques address the issue of finding missing links between different music knowledge graphs at scale, accounting for this coexistence of musical content and context in the same knowledge graph. This deliverable describes our efforts, particularly gathered in Polifonia's WP2 and Task T2.3, in addressing these challenges, delivering: (a) a scalable methodology for knowledge graph construction that is well suited for the project and sits in-between the two classic extremes of ontology engineering; (b) a music knowledge graph construction framework that leverages modules of the Polifonia Ontology Network and the SPARQL Anything tool; and (c) a music knowledge graph interlinking framework, based on both heuristics and neural network-based link prediction through music knowledge graph embeddings. The latter two are evaluated in two different use-cases, the ChoCo-KG chord annotation knowledge graph, and the MIDI2vec music knowledge graph interlinking method, with encouraging results.

References (154)

  1. A. Hogan, E. Blomqvist, M. Cochez, C. d'Amato, G. d. Melo, C. Gutierrez, S. Kirrane, J. E. L. Gayo, R. Navigli, S. Neumaier et al., "Knowledge graphs," Synthesis Lectures on Data, Semantics, and Knowledge, vol. 12, no. 2, pp. 1-257, 2021.
  2. C. Guillotel-Nothmann, "Knowledge extraction and modelling in the project thesaurus mu- sicarum germanicarum," in Prague DH Workshops Session III: Editions, 2020.
  3. A. Meroño Peñuela, C. Guillotel-Nothmann, J. de Berardinis, D. Sol Martinez Pandiani, V. Anita Carriero, M. Wigham, A. Poltronieri, F. Ciroku, and P. Rigaux, "D2.1 ontology-based knowledge graphs for music objects 1st version," European Commission, The Polifonia consortium, Tech. Rep., 2021.
  4. A. M.-P. V. C. Fiorela Ciroku, Jacopo de Berardinis, "D2.7 ontology testing and evaluation report; knowledge graph documentation and access interfaces," European Commission, The Polifonia consortium, Tech. Rep., 2022.
  5. A. Swartz, "MusicBrainz: A semantic Web service," IEEE Intelligent Systems, vol. 17, pp. 76-77, 2002, https://doi.org/10.1109%2F5254.988466.
  6. Y. Raimond, S. Abdallah, M. Sandler, and F. Giasson, "The Music Ontology," in Proceedings of the 8th International Conference on Music Information Retrieval, ISMIR 2007, Vienna, Austria, September 23-27, 2007.
  7. S. M. Rashid, D. De Roure, and D. L. McGuinness, "A music theory ontology," in Proceed- ings of the 1st International Workshop on Semantic Applications for Audio and Music, ser. SAAM '18. New York, NY, USA: Association for Computing Machinery, 2018, p. 6-14.
  8. J. Jones, D. de Siqueira Braga, K. Tertuliano, and T. Kauppinen, "Musicowl: The music score ontology," in Proceedings of the International Conference on Web Intelligence, ser. WI '17. New York, NY, USA: Association for Computing Machinery, 2017.
  9. S. S.-s. Cherfi, C. Guillotel, F. Hamdi, P. Rigaux, and N. Travers, "Ontology-based annota- tion of music scores," in Proceedings of the Knowledge Capture Conference, ser. K-CAP 2017. New York, NY, USA: Association for Computing Machinery, 2017.
  10. G. Fazekas, Y. Raimond, K. Jacobson, and M. Sandler, "An overview of semantic web activities in the omras2 project," Journal of New Music Research, vol. 39, 12 2010.
  11. A. Meroño-Peñuela, R. Hoekstra, A. Gangemi, P. Bloem, R. de Valk, B. Stringer, B. Janssen, V. de Boer, A. Allik, S. Schlobach et al., "The MIDI linked data cloud," in 16 th International Semantic Web Conference (ISWC). Vienna, Austria: Springer, 2017, pp. 156-164.
  12. M. M. Association, "The complete MIDI 1.0 detailed specification," MIDI Manufactur- Deliverable D2.4 Methods for interlinking knowledge graphs V1.0 30/06/2022
  13. ers Association, Los Angeles, CA, USA, Tech. Rep., 1996-2014, https://www.midi.org/ specifications/item/the-midi-1-0-specification.
  14. D. Vrandecic, S. Pinto, C. Tempich, and Y. Sure, "The DILIGENT knowledge processes," Journal of Knowledge Management, vol. 9, no. 5, pp. 85-96, 2005.
  15. M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-López, "The NeOn method- ology for ontology engineering," in Ontology engineering in a networked world. Springer, 2012, pp. 9-34.
  16. E. Blomqvist, V. Presutti, E. Daga, and A. Gangemi, "Experimenting with extreme design," in Knowledge Engineering and Management by the Masses. EKAW 2010, ser. Lecture Notes in Computer Science, P. Cimiano and H. S. Pinto, Eds., vol. 6317. Springer, Berlin, Heidelberg, 2010, pp. 120-134.
  17. D. Vrandečić and M. Krötzsch, "Wikidata: A Free Collaborative Knowledge Base," Commu- nications of the ACM, vol. 57, no. 10, pp. 78-85, 2014.
  18. A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. Van de Walle, "Rml: a generic language for integrated rdf mappings of heterogeneous data," in Ldow, 2014.
  19. T. Morris, T. Guidry, and M. Magdinie, "OpenRefine: A free, open source, powerful tool for working with messy data," The OpenRefine Development Team, Tech. Rep., 2015, http: //openrefine.org/.
  20. A. Meroño-Peñuela, A. Ashkpour, L. Rietveld, R. Hoekstra, and S. Schlobach, "Linked Humanities Data: The Next Frontier? A Case-study in Historical Census Data," in Pro- ceedings of the 2nd International Workshop on Linked Science (LISC2012). International Semantic Web Conference (ISWC), vol. 951. CEUR Workshop Proceedings, 2012, http://ceur-ws.org/Vol-951/.
  21. E. Daga, L. Asprino, P. Mulholland, and A. Gangemi, "Facade-x: an opinionated approach to sparql anything," Studies on the Semantic Web, vol. 53, pp. 58-73, 2021.
  22. J. L. Martinez-Rodriguez, I. López-Arévalo, and A. B. Rios-Alvarado, "Openie-based ap- proach for knowledge graph construction from text," Expert Systems with Applications, vol. 113, pp. 339-355, 2018.
  23. L. Li, P. Wang, J. Yan, Y. Wang, S. Li, J. Jiang, Z. Sun, B. Tang, T.-H. Chang, S. Wang et al., "Real-world data medical knowledge graph: construction and applications," Artificial intelligence in medicine, vol. 103, p. 101817, 2020.
  24. Y. Luan, L. He, M. Ostendorf, and H. Hajishirzi, "Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction," arXiv preprint arXiv:1808.09602, 2018.
  25. A. Bosselut, H. Rashkin, M. Sap, C. Malaviya, A. Celikyilmaz, and Y. Choi, "Comet: Commonsense transformers for automatic knowledge graph construction," arXiv preprint arXiv:1906.05317, 2019.
  26. P. Lisena, A. Meroño-Peñuela, and R. Troncy, "Midi2vec: Learning midi embeddings for Deliverable D2.4 Methods for interlinking knowledge graphs V1.0 30/06/2022
  27. reliable prediction of symbolic music metadata," Semantic Web, no. Preprint, pp. 1-21, 2020.
  28. E. Simperl and M. Luczak-Rösch, "Collaborative ontology engineering: a survey," The Knowledge Engineering Review, vol. 29, no. 1, pp. 101-131, 2014.
  29. H. S. Pinto, S. Staab, and C. Tempich, "Diligent: Towards a fine-grained methodology for distributed, loosely-controlled and evolving engineering of ontologies," in ECAI, vol. 16. Citeseer, 2004, p. 393.
  30. E. Blomqvist, K. Hammar, and V. Presutti, "Engineering ontologies with patterns -the extreme design methodology," in Ontology Engineering with Ontology Design Patterns - Foundations and Applications, ser. Studies on the Semantic Web, P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, Eds. Amsterdam: IOS Press, 2016, vol. 25.
  31. T. T. Cuong and C. Müller-Birn, "Applicability of sequence analysis methods in analyzing peer-production systems: a case study in wikidata," in International Conference on Social Informatics. Springer, 2016, pp. 142-156.
  32. C. Müller-Birn, B. Karran, J. Lehmann, and M. Luczak-Rösch, "Peer-production system or collaborative ontology engineering effort: What is wikidata?" in Proceedings of the 11th International Symposium on Open Collaboration, 2015, pp. 1-10.
  33. A. Piscopo, C. Phethean, and E. Simperl, "Wikidatians Are Born: Paths to Full Participation in a Collaborative Structured Knowledge Base," in 50th Hawaii International Conference on System Sciences. University of Hawaii, 2017, pp. 4354-4363.
  34. A. Piscopo and E. Simperl, "Who Models the World? Collaborative Ontology Creation and User Roles in Wikidata," Proceedings of the ACM on Human-Computer Interaction, vol. 2, no. CSCW, pp. 1-18, 2018.
  35. C. Sarasua, A. Checco, G. Demartini, D. Difallah, M. Feldman, and L. Pintscher, "The evolution of power and standard wikidata editors: comparing editing behavior over time to predict lifespan and volume of edits," Computer Supported Cooperative Work (CSCW), vol. 28, no. 5, pp. 843-882, 2019.
  36. T. Wilmering, G. Fazekas, and M. B. Sandler, "AUFX-O: novel methods for the repre- sentation of audio processing workflows," in 15 th International Semantic Web Conference (ISWC). Kobe, Japan: Springer International Publishing, 2016, pp. 229-237.
  37. A. Allik, G. Fazekas, and M. B. Sandler, "An ontology for audio features," in 17 th Interna- tional Society for Music Information Retrieval Conference (ISMIR), New York, NY, USA, 2016.
  38. P. Lisena and R. Troncy, "Doing reusable musical data (DOREMUS)," in Proceedings of Workshops and Tutorials of the 9th International Conference on Knowledge Capture (K- CAP2017), Austin, Texas, USA, December 4th, 2017, ser. CEUR Workshop Proceedings, vol. 2065. CEUR-WS.org, 2017.
  39. P. E. Schreur and N. Lorimer, "Linked data in libraries' technical services workflows," in Metadata and Semantic Research. Cham: Springer International Publishing, 2017, pp. 224-229.
  40. S. Song, M. Kim, S. Rho, and E. Hwang, "Music ontology for mood and situation reasoning to support music retrieval and recommendation," in 3 rd International Conference on Digital Society (ICDS). Cancun, Mexico: IEEE, 2009, pp. 304-309.
  41. S. Bechhofer, K. Page, and D. De Roure, "Hello cleveland! linked data publication of live music archives," in 2013 14th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS). IEEE, 2013, pp. 1-4.
  42. A. Meroño-Peñuela, R. Hoekstra, A. Gangemi, P. Bloem, R. de Valk, B. Stringer, B. Janssen, V. de Boer, A. Allik, S. Schlobach, and K. Page, "The midi linked data cloud," in The Semantic Web -ISWC 2017. Cham: Springer International Publishing, 2017.
  43. N. Harley and G. Wiggins, "An ontology for abstract, hierarchical music representation," in Demo at the 16th International Society for Music Information Retrieval Conference (ISMIR 2015), Malaga, Spain, 2015.
  44. B. Fields, K. Page, D. D. Roure, and T. Crawford, "The segment ontology: Bridging music- generic and domain-specific," in Proceedings -IEEE International Conference on Multime- dia and Expo, 2011, pp. 1--6.
  45. A. Allik, G. Fazekas, and M. Sandler, "Ontological Representation of Audio Features," in The Semantic Web -ISWC 2016. Springer, 2016, (to appear).
  46. G. Fazekas and M. B. Sandler, "The studio ontology framework," in Proceedings of the 12th International Society for Music Information Retrieval Conference, ISMIR 2011, Miami, Florida, USA, October 24-28, 2011. University of Miami, 2011.
  47. T. Wilmering, G. Fazekas, and M. B. Sandler, "The audio effects ontology," in Proceedings of the 14th International Society for Music Information Retrieval Conference, ISMIR 2013, Curitiba, Brazil, November 4-8, 2013, 2013.
  48. S. Bechhofer, S. Dixon, G. Fazekas, T. Wilmering, and K. Page, "Computational analysis of the live music archive," in ISMIR2014, 15th International Society for Music Information Retrieval Conference, 2014.
  49. S. Rho, S. Song, E. Hwang, and M. Kim, "Comus: Ontological and rule-based reasoning for music recommendation system," in Advances in Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
  50. H. H. Kim, "A semantically enhanced tag-based music recommendation using emotion ontology," in Intelligent Information and Database Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
  51. K. Jacobson, Y. Raimond, and M. B. Sandler, "An ecosystem for transparent music similar- ity in an open world," in Proceedings of the 10th International Society for Music Information Retrieval Conference, ISMIR 2009, Kobe International Conference Center, Kobe, Japan, October 26-30, 2009. International Society for Music Information Retrieval, 2009.
  52. F. Thalmann, A. P. Carrillo, G. Fazekas, G. A. Wiggins, and M. Sandler, "The mobile audio ontology: Experiencing dynamic music objects on mobile devices," in 2016 IEEE Tenth International Conference on Semantic Computing (ICSC). IEEE, 2016, pp. 47-54.
  53. M. Buffa, E. Cabrio, M. Fell, F. Gandon, A. Giboin, R. Hennequin, F. Michel, J. Pauwels, Deliverable D2.4 Methods for interlinking knowledge graphs V1.0 30/06/2022
  54. G. Pellerin, M. Tikat, and M. Winckler, "The WASABI dataset: cultural, lyrics and audio analysis metadata about 2 million popular commercially released songs," in 18 th Extended Semantic Web Conference (ESWC) -Resources Track. Cham: Springer International Publishing, 2021, pp. 515-531.
  55. S. Rashid, D. De Roure, and D. McGuinness, "A music theory ontology," in 1 st International Workshop on Semantic Applications for Audio and Music (SAAM). Monterey, CA, USA: ACM, 2018, pp. 6-14.
  56. S. Si-Said Cherfi, C. Guillotel, F. Hamdi, P. Rigaux, and N. Travers, "Ontology-based an- notation of music scores," in Knowledge Capture Conference (K-CAP). Austin, TX, USA: ACM, 2017, pp. 10:1-10:4.
  57. S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau Jr, S. Auer, J. Sequeda, and A. Ezzat, "A survey of current approaches for mapping of relational databases to rdf," W3C RDB2RDF Incubator Group Report, vol. 1, pp. 113-130, 2009.
  58. T. Lebo and J. McCusker, "csv2rdf4lod," Tetherless World, RPI, Tech. Rep., 2012, https: //github.com/timrdf/csv2rdf4lod-automation/wiki.
  59. E. Muñoz, A. Hogan, and A. Mileo, "DRETa: Extracting RDF from Wikitables," in Interna- tional Semantic Web Conference (Posters and Demos) 2013. CEUR, 2013, pp. 98-92.
  60. DERI, "RDF Refine -a Google Refine extension for exporting RDF," Digital Enterprise Research Institute, Tech. Rep., 2015, http://refine.deri.ie/.
  61. E. Kalampokis, A. Nikolov, P. Haase, R. Cyganiak, A. Stasiewicz, A. Karamanou, M. Zotou, D. Zeginis, E. Tambouris, and K. Tarabanis, "Exploiting Linked Data Cubes with Open- Cube Toolkit," in Proceedings of the ISWC 2014 Posters and Demos Track, 13th Inter- national Semantic Web Conference (ISWC2014), M. Horridge, M. Rospocher, and J. van Ossenbruggen, Eds., vol. 1272. Riva del Garda, Italy: CEUR-WS, 2014, pp. 137-140, http://ceur-ws.org/Vol-1272/paper_109.pdf.
  62. A. Ashkpour, A. Meroño-Peñuela, and K. Mandemakers, "The Dutch Historical Censuses: Harmonization and RDF," Historical Methods: A Journal of Quantitative and Interdisci- plinary History, vol. 48, 2015.
  63. A. Meroño-Peñuela, A. Ashkpour, M. van Erp, K. Mandemakers, L. Breure, A. Scharnhorst, S. Schlobach, and F. van Harmelen, "Semantic Technologies for Historical Research: A Survey," Semantic Web -Interoperability, Usability, Applicability, vol. 6, no. 6, pp. 539-564, 2015.
  64. A. Meroño-Peñuela, A. Ashkpour, L. Rietveld, R. Hoekstra, and S. Schlobach, "Linked Humanities Data: The Next Frontier? A Case-study in Historical Census Data," in Pro- ceedings of the 2nd International Workshop on Linked Science (LISC2012). International Semantic Web Conference (ISWC), vol. 951. CEUR Workshop Proceedings, 2012, http://ceur-ws.org/Vol-951/.
  65. A. Meroño-Peñuela, C. Guéret, A. Ashkpour, and S. Schlobach, "CEDAR: The Dutch His- torical Censuses as Linked Open Data," Semantic Web -Interoperability, Usability, Appli- cability, vol. 8, no. 2, pp. 297--310, 2015.
  66. W3C, "SPARQL 1.1 Overview," https://www.w3.org/TR/sparql11-overview/.
  67. B. Stringer, A. Meroño-Peñuela, A. Loizou, S. Abeln, and J. Heringa, "To SCRY Linked Data: Extending SPARQL the Easy Way," in Diversity++@ ISWC, 2015, pp. 8-14.
  68. A. Meroño-Peñuela, "Refining Statistical Data on the Web," Ph.D. dissertation, Vrije Uni- versiteit Amsterdam, 2016.
  69. T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global Data Space, 1st ed. Morgan and Claypool, 2011.
  70. J. Euzenat, P. Shvaiko et al., Ontology matching. Springer, 2007, vol. 18.
  71. J. Raad, W. Beek, F. v. Harmelen, N. Pernelle, and F. Saïs, "Detecting erroneous iden- tity links on the web using network metrics," in International semantic web conference. Springer, 2018, pp. 391-407.
  72. D. Bogdanov, N. Wack, E. Gómez Gutiérrez, S. Gulati, P. Herrera Boyer, O. Mayor, G. Roma Trepat, J. Salamon, J. R. Zapata González, and X. Serra, "Essentia: an au- dio analysis library for music information retrieval," in 14 th International Society for Music Information Retrieval Conference (ISMIR), Curitiba, Brazil, 2013.
  73. O. Celma, P. Herrera, and X. Serra, "Bridging the music semantic gap," in ESWC Workshop on Mastering the Gap: From Information Extraction to Semantic Representation, vol. 187, CEUR. Budva, Montenegro: CEUR, 11-06-2006 2006.
  74. Z. Cataltepe, Y. Yaslan, and A. Sonmez, "Music genre classification using MIDI and audio features," EURASIP Journal on Advances in Signal Processing, vol. 2007, no. 1, p. 036409, 2007.
  75. C. McKay, J. Burgoyne, J. Hockman, J. B. L. Smith, G. Vigliensoni, and I. Fujinaga, "Evalu- ating the genre classification performance of lyrical features relative to audio, symbolic and cultural features," in 11 th International Society for Music Information Retrieval Conference (ISMIR), Utrecht, The Netherlands, 2010.
  76. J. Pons, O. Nieto, M. Prockup, E. Schmidt, A. Ehmann, and X. Serra, "End-to-end learning for music audio tagging at scale," arXiv preprint arXiv:1711.02520, 2017.
  77. A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck, "A hierarchical latent vector model for learning long-term structure in music," in 35 th International Conference on Ma- chine Learning (ICML), ser. Proceedings of Machine Learning Research, vol. 80. Stock- holmsmässan, Sweden: PMLR, 2018, pp. 4364-4373.
  78. P. Lisena and R. Troncy, "Combining music specific embeddings for computing artist simi- larity," Suzhou, China, 2017.
  79. P. Lisena, K. Todorov, C. Cecconi, F. Leresche, I. Canno, F. Puyrenier, M. Voisin, and R. Troncy, "Controlled vocabularies for music metadata," in 19 th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, 2018.
  80. J. de Berardinis, T. Bottini, P. Cathé, E. Daga, M. Daquino, A. Davy-Rigaux, C. Guillotel- Nothmann, M. Gurrieri, P. van Kranenburg, E. Marzi, J. McDermott, A. M. Peñuela, P. Mul- holland, A. Scharnhorst, and R. Tripodi, "D1.2 roadmap and pilot requirements 2nd ver- sion," European Commission, The Polifonia consortium, Tech. Rep., 2022.
  81. S. Cherfi, C. Guillotel, F. Hamdi, P. Rigaux, and N. Travers, "Ontology-Based Annotation of Music Scores," in Intl. Conf. on Knowledge Capture (K-CAP'17), 2017, austin, Texas, Dec. 4-6 2017.
  82. W. B. De Haas, M. Robine, P. Hanna, R. C. Veltkamp, and F. Wiering, "Comparing ap- proaches to the similarity of musical chord sequences," in International Symposium on Computer Music Modeling and Retrieval. Springer, 2010, pp. 242-258.
  83. J. de Berardinis, A. Cangelosi, and E. Coutinho, "Measuring the structural complexity of music: from structural segmentations to the automatic evaluation of models for music gen- eration," IEEE/ACM Transactions on Audio, Speech and Language Processing, 2022.
  84. J. de Berardinis, M. Vamvakaris, A. Cangelosi, and E. Coutinho, "Unveiling the hierarchical structure of music by multi-resolution community detection," Transactions of the Interna- tional Society for Music Information Retrieval, vol. 3, no. 1, pp. 82-97, 2020.
  85. Y. E. Kim, E. M. Schmidt, R. Migneco, B. G. Morton, P. Richardson, J. Scott, J. A. Speck, and D. Turnbull, "Music emotion recognition: A state of the art review," in Proc. ismir, vol. 86, 2010, pp. 937-952.
  86. J. de Berardinis, A. Cangelosi, and E. Coutinho, "The multiple voices of musical emotions: Source separation for improving music emotion recognition models and their interpretabil- ity," in Proceedings of the 21st International Society for Music Information Retrieval Confer- ence, 2020, pp. 310-317.
  87. J. Posner, J. A. Russell, and B. S. Peterson, "The circumplex model of affect: An inte- grative approach to affective neuroscience, cognitive development, and psychopathology," Development and psychopathology, vol. 17, no. 3, pp. 715-734, 2005.
  88. P. Knees and M. Schedl, "A survey of music similarity and recommendation from music context data," ACM Transactions on Multimedia Computing, Communications, and Appli- cations (TOMM), vol. 10, no. 1, pp. 1-21, 2013.
  89. A. Allik, F. Thalmann, and M. Sandler, "Musiclynx: Exploring music through artist similarity graphs," in Companion Proceedings of the The Web Conference 2018, 2018, pp. 167-170.
  90. T. Bottini, V. A. Carriero, J. Carvalho, P. Cathé, F. Ciroku, E. Daga, M. Daquino, A. Davy- Rigaux, C. Guillotel-Nothmann, M. Gurrieri, P. van Kemenade, E. Marzi, A. M. no Peñue- lala, P. Mulholland, E. Musumeci, V. Presutti, and A. Scharnhorst, "D1.1 roadmap and pilot requirements 1st version," European Commission, The Polifonia consortium, Tech. Rep., 2021.
  91. L. Yujian and L. Bo, "A normalized levenshtein distance metric," IEEE transactions on pat- tern analysis and machine intelligence, vol. 29, no. 6, pp. 1091-1095, 2007.
  92. A. Grover and J. Leskovec, "node2vec: scalable feature learning for networks," in 22 nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 2016.
  93. P. Rigaux, L. Abrouk, H. Audéon, N. Cullot, C. Davy-Rigaux, Z. Faget, E. Gavignet, D. Gross-Amblard, A. Tacaille, and V. Thion-Goasdoué, "The design and implementation Deliverable D2.4 Methods for interlinking knowledge graphs V1.0 30/06/2022
  94. of neuma, a collaborative digital scores library," International Journal on Digital Libraries, vol. 12, no. 2, pp. 73-88, 2012.
  95. A. Schoenberg, Theory of harmony. Univ of California Press, 1983.
  96. W. B. De Haas, R. C. Veltkamp, and F. Wiering, "Tonal pitch step distance: a similarity measure for chord progressions." in ISMIR, 2008, pp. 51-56.
  97. W. B. De Haas, M. Rohrmeier, R. C. Veltkamp, and F. Wiering, "Modeling harmonic similar- ity using a generative grammar of tonal harmony," in Proceedings of the Tenth International Conference on Music Information Retrieval (ISMIR), 2009.
  98. E. J. Humphrey, J. Salamon, O. Nieto, J. Forsyth, R. M. Bittner, and J. P. Bello, "JAMS: A JSON Annotated Music Specification for Reproducible MIR Research." in ISMIR, 2014, pp. 591-596.
  99. M. Mauch, C. Cannam, M. Davies, S. Dixon, C. Harte, S. Kolozali, D. Tidhar, and M. San- dler, "Omras2 metadata project 2009," in 12th International Society for Music Information Retrieval Conference, ser. ISMIR, 2009.
  100. V. Eremenko, E. Demirel, B. Bozkurt, and X. Serra, "Jaah: Audio-aligned jazz harmony dataset," Jun. 2018. [Online]. Available: https://doi.org/10.5281/zenodo.1290737
  101. C. Weiß, F. Zalkow, V. Arifi-Müller, M. Müller, H. V. Koops, A. Volk, and H. G. Grohganz, "Schubert winterreise dataset: A multimodal scenario for music analysis," Journal on Com- puting and Cultural Heritage (JOCCH), vol. 14, no. 2, pp. 1-18, 2021.
  102. J. A. Burgoyne, J. Wild, and I. Fujinaga, "An expert ground truth set for audio chord recog- nition and music analysis." in ISMIR, vol. 11, 2011, pp. 633-638.
  103. H. V. Koops, W. B. de Haas, J. A. Burgoyne, J. Bransen, A. Kent-Muller, and A. Volk, "Annotator subjectivity in harmony annotations of popular music," Journal of New Music Research, vol. 48, no. 3, pp. 232-252, 2019. [Online]. Available: https://doi.org/10.1080/09298215.2019.1613436
  104. B. Di Giorgi, M. Zanoni, A. Sarti, and S. Tubaro, "Automatic chord recognition based on the probabilistic modeling of diatonic modal harmony," in nDS'13; Proceedings of the 8th International Workshop on Multidimensional Systems. VDE, 2013, pp. 1-6.
  105. M. Mauch, S. Dixon, C. Harte et al., "Discovering chord idioms through beatles and real book songs," 2007.
  106. A. Berenzweig, B. Logan, D. P. Ellis, and B. Whitman, "A large-scale evaluation of acoustic and subjective music-similarity measures," Computer Music Journal, pp. 63-76, 2004.
  107. M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, "Rwc music database: Popular, classical and jazz music databases." in Ismir, vol. 2, 2002, pp. 287-288.
  108. M. Pfleiderer, K. Frieler, J. Abeßer, W.-G. Zaddach, and B. Burkhart, Eds., Inside the Jaz- zomat -New Perspectives for Jazz Research. Schott Campus, 2017.
  109. G. Micchi, M. Gotham, and M. Giraud, "Not all roads lead to rome: Pitch representation and model architecture for automatic harmonic analysis," Transactions of the International Society for Music Information Retrieval (TISMIR), vol. 3, no. 1, pp. 42-54, 2020.
  110. T. De Clercq and D. Temperley, "A corpus analysis of rock harmony," Popular Music, vol. 30, no. 1, pp. 47-70, 2011.
  111. J. Hentschel, M. Neuwirth, and M. Rohrmeier, "The annotated mozart sonatas: Score, harmony, and cadence," Transactions of the International Society for Music Information Retrieval, vol. 4, no. 1, 2021.
  112. M. Granroth-Wilding and M. Steedman, "A robust parser-interpreter for jazz chord se- quences," Journal of New Music Research, vol. 43, no. 4, pp. 355-374, 2014.
  113. "Nottingham database," https://ifdo.ca/~seymour/nottingham/nottingham.html, accessed: 2022-05-05.
  114. T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. D. Iii, and K. Craw- ford, "Datasheets for datasets," Communications of the ACM, vol. 64, no. 12, pp. 86-92, 2021.
  115. C. Sutton, Y. Raimond, and M. Mauch, "The OMRAS2 Chord Ontology," http://purl.org/ ontology/chord/, 2007.
  116. E. Daga, L. Asprino, P. Mulholland, and A. Gangemi, "Facade-x: An opinionated approach to sparql anything," in Volume 53: Further with Knowledge Graphs, M. Alam, P. Groth, V. de Boer, T. Pellegrini, and H. J. Pandit, Eds. IOS Press, August 2021, vol. 53, pp. 58-73. [Online]. Available: http://oro.open.ac.uk/78973/
  117. M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney, "Content-based multimedia information retrieval: current directions and future challenges," Proceedings of the IEEE, vol. 96, no. 4, pp. 668-696, 2008.
  118. A. Ratner, C. De Sa, S. Wu, D. Selsam, and C. Ré, "Data programming: creating large training sets, quickly," in 30 th International Conference on Neural Information Processing Systems (NIPS), ser. NIPS'16. Red Hook, NY, USA: Curran Associates Inc., 2016, p. 3574-3582.
  119. A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, "Snorkel: rapid training data creation with weak supervision," in Proceedings of the VLDB Endowment. Interna- tional Conference on Very Large Data Bases, vol. 11, no. 3. NIH Public Access, 2017, p. 269.
  120. C. Raffel and D. P. W. Ellis, "Extracting ground truth information from MIDI files: a MID- Ifesto," in 17 th International Society for Music Information Retrieval Conference (ISMIR), New York, NY, USA, 2016.
  121. C. Raffel, "Learning-based methods for comparing sequences, with applications to audio- to-MIDI alignment and matching," PhD thesis, Columbia University, 2016.
  122. O. Celma and X. Serra, "FOAFing the music: bridging the semantic gap in music recom- mendation," Web Semantics: Science, Services and Agents on the World Wide Web, vol. 6, no. 4, pp. 250-256, 2008.
  123. C. McKay and I. Fujinaga, "Automatic genre classification using large high-level musi- cal feature sets," in 5 th International Conference on Music Information Retrieval (ISMIR), Barcelona, Spain, 2004.
  124. Z. Fu, G. Lu, K. M. Ting, and D. Zhang, "A survey of audio-based music classification and annotation," IEEE Transactions on Multimedia, vol. 13, no. 2, pp. 303-319, 2011.
  125. I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
  126. T. Mikolov, K. Chen, G. Corrado, and D. Jeffrey, "Efficient estimation of word representations in vector space," in 1 st International Conference on Learning Representations (ICLR), Workshop Track, Scottsdale, AZ, USA, 2013. [Online]. Available: http://arxiv.org/abs/1301.3781
  127. A. Huang and R. Wu, "Deep learning for music," Computing Research Repository (CoRR), vol. abs/1606.04930, 2016.
  128. Y. Yan, E. Lustig, J. VanderStel, and Z. Duan, "Part-invariant model for music generation and harmonization," in 19 th International Society for Music Information Retrieval Confer- ence (ISMIR), Paris, France, 2018.
  129. P. Ristoski, J. Rosati, T. Di Noia, R. De Leone, and H. Paulheim, "RDF2Vec: RDF graph embeddings and their applications," Semantic Web Journal, vol. 10, no. 4, pp. 721-752, 2019.
  130. Z. S. Harris, "Distributional structure," WORD, vol. 10, no. 2-3, pp. 146-162, 1954.
  131. J. Pennington, R. Socher, and C. Manning, "GloVe: global vectors for word representation," in Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Associa- tion for Computational Linguistics, 2014, pp. 1532-1543.
  132. R. Diestel, Graph Theory, ser. Graduate Texts in Mathematics. Springer, 2005, vol. 173.
  133. P. Goyal and E. Ferrara, "Graph embedding techniques, applications, and performance: a survey," Knowledge-Based Systems, vol. 151, pp. 78 -94, 2018.
  134. B. Perozzi, R. Al-Rfou, and S. Skiena, "DeepWalk: online learning of social representations," in 20 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). New York, NY, USA: ACM, 2014, pp. 701-710. [Online]. Available: http://doi.acm.org/10.1145/2623330.2623732
  135. E. Palumbo, D. M. G. Rizzo, R. Troncy, and E. Baralis, "entity2rec: property-specific knowl- edge graph embeddings for item tecommendation," Expert Systems with Applications, vol. 151, p. 113235, 2020.
  136. A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal, "graph2vec: learning distributed representations of graphs," in 13 th International Workshop on Mining and Learning with Graphs (MLG), 2017.
  137. E. Daga, L. Panziera, and C. Pedrinaci, "A BASILar Approach for Building Web APIs on top of SPARQL Endpoints," in Services and Applications over Linked APIs and Data - SALAD2015 (ISWC 2015), vol. 1359. CEUR Workshop Proceedings, 2015, http://ceur-ws. org/Vol-1359/.
  138. M. Kejriwal and P. Szekely, "Neural embeddings for populated Geonames locations," in 16 th International Semantic Web Conference (ISWC). Vienna, Austria: Springer International Publishing, 2017, pp. 139-146.
  139. J. Pujara, E. Augustine, and L. Getoor, "Sparsity and noise: where knowledge graph embeddings fall short," in Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 2017, pp. 1751-1756. [Online]. Available: http://aclweb.org/anthology/D17-1184
  140. C. Ranjan, S. Ebrahimi, and K. Paynabar, "Sequence graph transform (SGT): a feature extraction function for sequence data mining," arXiv preprint arXiv:1608.03533, 2016.
  141. U. Singer, I. Guy, and K. Radinsky, "Node embedding over temporal graphs," in 28 th Inter- national Joint Conference on Artificial Intelligence, (IJCAI). IJCAI Organization, 7 2019, pp. 4605-4612.
  142. M. Grohe, "Word2vec, node2vec, graph2vec, x2vec: towards a theory of vector embed- dings of structured data," in 39 th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, ser. PODS'20. New York, NY, USA: Association for Computing Machinery, 2020, p. 1-16.
  143. A. Meroño-Peñuela, R. Pernisch, C. Guéret, and S. Schlobach, "Multi-domain and explain- able prediction of changes in web vocabularies," in Proceedings of the 11th on Knowledge Capture Conference, 2021, pp. 193-200.
  144. J. Engel, L. Hantrakul, C. Gu, and A. Roberts, "Ddsp: Differentiable digital signal process- ing," arXiv preprint arXiv:2001.04643, 2020.
  145. C. Raffel and D. P. Ellis, "Intuitive analysis, creation and manipulation of MIDI data with pretty_midi," in 15 th International Conference on Music Information Retrieval (ISMIR), Late Breaking Demo, Taipei, Taiwan, 2014, pp. 84-93.
  146. M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne et al., "The fair guiding principles for scientific data management and stewardship," Scientific data, vol. 3, no. 1, pp. 1-9, 2016.
  147. P. Groth and L. Moreau, "Prov-overview," W3C Working Group Note, 2013.
  148. A. Meroño-Peñuela, D. Spagnuelo et al., "Can a transformer assist in scientific writing? generating semantic web paper snippets with gpt-2," in European Semantic Web Confer- ence. Springer, 2020, pp. 158-163.
  149. C. Geerlings and A. Merono-Penuela, "Interacting with gpt-2 to generate controlled and believable musical sequences in abc notation," in Proceedings of the 1st Workshop on NLP for Music and Audio (NLP4MusA), 2020, pp. 49-53.
  150. A. Meroño-Peñuela, R. Meerwaldt, and S. Schlobach, "Sparql-dj: The midi linked data mashup mixer for your next semantic party." in ISWC (Posters, Demos & Industry Tracks), 2017.
  151. P. Lisena, A. Meroño-Peñuela, T. Kuhn, and R. Troncy, "Easy web api development with sparql transformer," in International semantic web conference. Springer, 2019, pp. 454- 470.
  152. A. Meroño-Peñuela and R. Hoekstra, "grlc makes github taste like linked data apis," in European Semantic Web Conference. Springer, 2016, pp. 342-353.
  153. A. Meroño-Peñuela and C. Martinez-Ortiz, "grlc: the git repository linked data api construc- tor." Journal of Open Source Software, vol. 6, no. 67, p. 2731, 2021.
  154. A. Meroño-Peñuela, P. Lisena, and C. Martínez-Ortiz, "Web data apis for knowledge graphs: Easing access to semantic data for application developers," Synthesis Lectures on Data, Semantics, and Knowledge, vol. 11, no. 2, pp. 1-118, 2021.