Academia.eduAcademia.edu

Outline

Complex contact manifolds and circle actions

2009

Abstract

We prove rigidity and vanishing theorems for several holomorphic Euler characteristics on complex contact manifolds admitting holomorphic circle actions preserving the contact structure. Such vanishings are reminiscent of those of LeBrun and Salamon on Fano contact manifolds but under a symmetry assumption instead of a curvature condition.

References (9)

  1. Atiyah, M., Hirzebruch, F.: Spin-manifolds and group actions. Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham) 1970, pp. 18-28 Springer, New York
  2. Atiyah, M. F., Singer, I. M.: The index of elliptic operators. III. Ann. of Math. (2) 87 546-604 (1968)
  3. Boothby, W. M.: A note on homogeneous complex contact manifolds. Proc. Amer. Math. Soc. 13 1962 276-280
  4. Hattori, A.: Spin c -structures and S 1 -actions. Invent. Math. 48 (1978), no. 1, 7-31
  5. Hirzebruch, F., Berger, T., Jung, R.: Manifolds and Modular Forms. Aspects of Math- ematics, VIEWEG (1992)
  6. Kobayashi, S.: Remarks on complex contact manifolds. Proc. Amer. Math. Soc. 10 1959 164-167
  7. LeBrun, C.: Fano manifolds, contact structures, and quaternionic geometry. (English summary) Internat. J. Math. 6 (1995), no. 3, 419-437
  8. Moroianu, A.: Spin c manifolds and complex contact structures. (English summary) Comm. Math. Phys. 193 (1998), no. 3, 661674.
  9. LeBrun, C.R., Salamon, S.M.: Strong rigidity of positive quaternion-Kähler manifolds. Invent. Math. 118, 109-132 (1994)