Collective decision-making by a group of cockroach-like robots
2005
https://doi.org/10.1109/SIS.2005.1501627Abstract
In group-living animals, aggregation favours interactions as well as information exchanges between individuals, and allows thus the emergence of complex collective behaviors. In previous works, a model of a self-enhanced aggregation was deduced from experiments with the cockroach Blattella germanica. In this work, this model was implemented in micro-robots Alice and successfully reproduced the agregation dynamics observed in a group of cockroaches. We showed that this aggregation process, based on a small set of simple behavioral rules and interactions among individuals, can be used by the group of robots to select collectively an aggregation site among two identical or different shelters. Moreover, we showed that the aggregation mechanism allows the robots as a group to "estimate" the size of each shelter during the collective decision-making process, a capacity which is not explicitly coded at the individual level but that simply emerges from the aggregation behaviour.
References (28)
- REFERENCES
- Agassounon, W., & Martinoli, A. (2002). A macro- scopic model of an aggregation experiment using embod- ied agents in groups of time-varying sizes. In Proceed- ings of the 2002 IEEE Systems, Man and Cybernetics Conference, Hammamet, Tunisia. IEEE Press.
- Ame, J.-M., Rivault, C., & Deneubourg, J.-L. (2004). Cockroach aggregation based on strain odour recogni- tion. Animal Behaviour, 68(4), 793-801.
- Beckers, R., Holland, O. E., & Deneubourg, J.-L. (1994). From local actions to global tasks: stigmergy and collective robotics. In Brooks, R., & Maes, P. (Eds.), Proceedings of the Fourth Workshop on Artificial Life, 181-189, Cambridge, MA. MIT Press.
- Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence : from natural to artificial systems. Oxford University Press, Oxford.
- Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (1998). The synchronization of recruitment-based activ- ities in ants. BioSystems, 45, 195-211.
- Camazine, S., Deneubourg, J., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton University Press, Prince- ton.
- Caprari, G., Estier, T., & Siegwart, R. (2002). Fascina- tion of down scaling -Alice the sugar cube robot. Jour- nal of Micromechatronics, 1(3), 177-189.
- Deneubourg, J. L., Lioni, A., & Detrain, C. (2002). Dy- namics of aggregation and emergence of cooperation. Bi- ological Bulletin, 202(3), 262-7.
- Detrain, C., & Pasteels, J. (1992). Caste polyethism and collective defense in the ant, Pheidole pallidula: the outcome of quantitative differences in recruitment. Be- havioral Ecology and Sociobiology, 29, 405-412.
- Dussutour, A., Fourcassié, V., Helbing, D., & Deneubourg, J. L. (2004). Optimal traffic organization in ants under crowded conditions. Nature, 428(6978), 70-3.
- Franks, N. R., & Deneubourg, J.-L. (1997). Self- organizing nest construction in ants: the behaviour of individual workers and the properties of the nest's dy- namics. Animal Behaviour, 54, 779-796.
- Gautrais, J., Jost, C., Jeanson, R., & Theraulaz, G. (2004). How individual interactions control aggregation patterns in gregarious arthropods. Interaction Studies, 5(2), 245-269.
- Grassé, P.-P. (1959). La reconstruction du nid et les co- ordinations inter-individuelles chez Bellicositermes Na- talensis et Cubitermes sp. La théorie de la stigmergie : essai d'interprétation du comportement des termites con- structeurs. Insectes sociaux, 6, 41-81.
- Holland, O., & Melhuish, C. (1999). Stigmergy, self- organisation, and sorting in collective robotics. Artificial Life, 5, 173-202.
- Jeanson, R., Blanco, S., Fournier, R., Deneubourg, J. L., Fourcassié, V., & Theraulaz, G. (2003). A model of animal movements in a bounded space. Journal of Theoretical Biology, 225(4), 443-451.
- Jeanson, R., Deneubourg, J., & Theraulaz, A. G. G. (2004). Modulation of individual behavior and collective decision-making during aggregation site selection by the ant Messor sancta. Behavioral Ecology and Sociobiol- ogy, 55, 388-394.
- Jeanson, R., Rivault, C., Deneubourg, J.-L., Blanco, S., Fournier, R., Jost, C., & Theraulaz, G. (2005). Self-organized aggregation in cockroaches. Animal Be- haviour, 69(1), 169-180.
- Ledoux, A. (1945). Étude experimentale du grégarisme et de l'interattraction sociale chez les Blat- tidés. Annales des Sciences Naturelles Zoologie et Bi- ologie Animale, 7, 76-103.
- Martinoli, A., & Mondada, F. (1995). Collective and cooperative group behaviours: biologically inspired ex- periments in robotics. In Khatib, O., & Salisbury, J. K. (Eds.), Proceedings of the Fourth International Sympo- sium on Experimental Robotics, 3-10, Stanford. Lecture Notes in Control and Information Sciences.
- Millor, Pham-Delegue, Deneubourg, & Camazine (1999). Self-organized defensive behavior in honeybees. Proc Natl Acad Sci U S A, 96(22), 12611-5.
- Pasteels, J. M., Deneubourg, J.-L., & Goss, S. (1987). Self-organization mechanisms in ant societies (i) : trail recruitment to newly discovered food sources. In Pas- teels, J. M., & Deneubourg, J.-L. (Eds.), From individual to collective behavior in social insects, volume 54, 155- 175, Bâle. Birkhaüser.
- R Development Core Team (2004). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051- 07-0.
- Rust, M. K., Owens, J. M., & Reierson, D. A. (1995). Understanding and controlling the german cockroach. Oxford University Press, Oxford.
- Sahin, E., & Spears, W. M. (Eds.) (2005). Swarm Robotics, SAB 2004 International Workshop, Santa Mon- ica, CA, USA, July 17, 2004, Revised Selected Papers, volume 3342 of Lecture Notes in Computer Science. Springer.
- Seeley, T., Camazine, S., & Sneyd, J. (1991). Col- lective decision-making in honey bees: how colonies choose among nectar sources. Behavioural Ecology and Sociobiology, 28, 277-290.
- Sugawara, K., & Sano, M. (1997). Cooperative accel- eration of task performance: foraging behavior of inter- acting multi-robots system. Physica D: Nonlinear Phe- nomena, 100(3/4), 343-354.
- Wagner, I. A., & Bruckstein, A. M. (2001). Ant robotics. Annals of Mathematics and Artificial Intelli- gence, 31, 1-238.