Academia.eduAcademia.edu

Outline

Steering is initiated based on error accumulation

2022, Journal of Experimental Psychology: Human Perception and Performance

https://doi.org/10.1037/XHP0000970

Abstract

Vehicle control by humans is possible because the central nervous system is capable of using visual information to produce complex sensorimotor actions. Drivers must monitor errors and initiate steering corrections of appropriate magnitude and timing to maintain a safe lane position. The perceptual mechanisms determining how a driver processes visual information and initiates steering corrections remain unclear. Previous research suggests two potential alternative mechanisms for responding to errors: (i) perceptual evidence (error) satisficing fixed constant thresholds (Threshold), or (ii) the integration of perceptual evidence over time (Accumulator). To distinguish between these mechanisms an experiment was conducted using a computer-generated steering correction paradigm. Drivers (N=20) steered towards an intermittently appearing 'road-line' that varied in position and orientation with respect to the driver's position and trajectory. One key prediction from a Threshold framework is a fixed absolute error response across conditions regardless of the rate of error development, whereas the Accumulator framework predicts that drivers would respond to larger absolute errors when the error signal develops at a faster rate. Results were consistent with an Accumulator framework, thus we propose that models of steering should integrate perceived control error over time in order to accurately capture human perceptual performance.

References (65)

  1. Asai, Y., Tasaka, Y., Nomura, K., Nomura, T., Casadio, M., & Morasso, P. (2009). A model of postural control in quiet standing: Robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS ONE, 4(7). https://doi.org/10.1371/journal.pone.0006169
  2. Bates, D, Maechler, M., Bolker, B., Version, S. W.-, & 2018, U. (2019). Package "lme4." In researchgate.net. Retrieved from https://www.researchgate.net/profile/Sorour_Karimi/post/How_do_I_statistically_compa re_cell_proliferation_rates2/attachment/5d119e3e3843b0b982582820/AS%3A7735315 87604482%401561435710646/download/lme4.pdf
  3. Bates, Douglas, Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed- effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
  4. Beall, A. C., & Loomis, J. M. (1996). Visual control of steering without course information. Perception, 25(4), 481-494. https://doi.org/10.1068/p250481
  5. Benderius, O., & Markkula, G. (2014). Evidence for a fundamental property of steering. Proceedings of the Human Factors and Ergonomics Society, 2014-Janua(1), 884-888. https://doi.org/10.1177/1541931214581186
  6. Billington, J., Field, D. T., Wilkie, R. M., & Wann, J. P. (2010). An fMRI Study of Parietal Cortex Involvement in the Visual Guidance of Locomotion. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1495-1507. https://doi.org/10.1037/a0018728
  7. Bozdogan, H. (1987). Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370. https://doi.org/10.1007/BF02294361
  8. Brenner, E., & Smeets, J. B. J. (1997). Fast responses of the human hand to changes in target position. Journal of Motor Behavior, 29(4), 297-310. https://doi.org/10.1080/00222899709600017
  9. Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57(3), 153-178. https://doi.org/10.1016/j.cogpsych.2007.12.002
  10. Brown, S., & Heathcote, A. (2005). A ballistic model of choice response time. Psychological Review, 112(1), 117-128. https://doi.org/10.1037/0033-295X.112.1.117
  11. Cisek, P. (2019). Resynthesizing behavior through phylogenetic refinement. Attention, Perception, and Psychophysics, 81(7), 2265-2287. https://doi.org/10.3758/s13414-019- 01760-1
  12. de Lafuente, V., Jazayeri, M., & Shadlen, M. N. (2015). Representation of accumulating evidence for a decision in two parietal areas. Journal of Neuroscience, 35(10), 4306- 4318. https://doi.org/10.1523/JNEUROSCI.2451-14.2015
  13. DinparastDjadid, A., D. Lee, J., Schwarz, C., Venkatraman, V., L. Brown, T., Gasper, J., & Gunaratne, P. (2018). After Vehicle Automation Fails: Analysis of Driver Steering Behavior after a Sudden Deactivation of Control. International Journal of Automotive Engineering, 9(4), 208-214. https://doi.org/10.20485/jsaeijae.9.4_208
  14. Dorokhova, L., & Imperio, M. D. (2020). Rise Dynamics Determines Tune Perception in French : the Case of Questions and Continuations. Hal.Archives-Ouvertes.Fr, (1), 691- 695. Retrieved from https://hal.archives-ouvertes.fr/hal-02476914
  15. Gabrielli, F., Paganelli, S., Schiro, J., Pudlo, P., & Djemai, M. (2012). Driving simulation protocol to determine steering strategies. International Journal of Industrial Ergonomics, 42(5), 469-477. https://doi.org/10.1016/j.ergon.2012.06.002
  16. Gawthrop, P., Gollee, H., & Loram, I. (2015). Intermittent control in man and machine. In Event-Based Control and Signal Processing (pp. 281-349). https://doi.org/10.1201/b19013
  17. Gawthrop, P., Lee, K. Y., Halaki, M., & O'Dwyer, N. (2013). Human stick balancing: An intermittent control explanation. Biological Cybernetics, 107(6), 637-652. https://doi.org/10.1007/s00422-013-0564-4
  18. Gawthrop, P., Loram, I., Lakie, M., & Gollee, H. (2011). Intermittent control: A computational theory of human control. Biological Cybernetics, 104(1-2), 31-51. https://doi.org/10.1007/s00422-010-0416-4
  19. GIBSON, J. J. (1958). VISUALLY CONTROLLED LOCOMOTION AND VISUAL ORIENTATION IN ANIMALS. British Journal of Psychology, 49(3), 182-194. https://doi.org/10.1111/j.2044-8295.1958.tb00656.x
  20. Green, P., & Macleod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493-498. https://doi.org/10.1111/2041-210X.12504
  21. Hanneton, S., Berthoz, A., Droulez, J., & Slotine, J. J. E. (1997a). Does the brain use sliding variables for the control of movements? Biological Cybernetics, 77(6), 381-393. https://doi.org/10.1007/s004220050398
  22. Hanneton, S., Berthoz, A., Droulez, J., & Slotine, J. J. E. (1997b). Does the brain use sliding variables for the control of movements? Biological Cybernetics, 77(6), 381-393. https://doi.org/10.1007/s004220050398
  23. Hoenig, J. M., & Heisey, D. M. (2001). The abuse of power: The pervasive fallacy of power calculations for data analysis. American Statistician, 55(1), 19-24. https://doi.org/10.1198/000313001300339897
  24. Huk, A. C., & Shadlen, M. N. (2005). Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. Journal of Neuroscience, 25(45), 10420-10436. https://doi.org/10.1523/JNEUROSCI.4684- 04.2005
  25. Kelly, S. P., & O'Connell, R. G. (2013). Internal and External Influences on the Rate of Sensory Evidence Accumulation in the Human Brain. Journal of Neuroscience, 33(50), 19434-19441. https://doi.org/10.1523/jneurosci.3355-13.2013
  26. Kountouriotis, G. K., Mole, C. D., Merat, N., & Wilkie, R. M. (2016). The need for speed: Global optic flow speed influences steering. Royal Society Open Science, 3(5). https://doi.org/10.1098/rsos.160096
  27. Kountouriotis, G. K., Shire, K. A., Mole, C. D., Gardner, P. H., Merat, N., & Wilkie, R. M. G. (2013). Optic flow asymmetries bias high-speed steering along roads. Journal of Vision, 13(10). https://doi.org/10.1167/13.10.23
  28. Kountouriotis, G. K., & Wilkie, R. M. (2013). Displaying optic flow to simulate locomotion: Comparing heading and steering. I-Perception, 4(5), 333-346. https://doi.org/10.1068/i0590
  29. Kovaceva, J., Bärgman, J., & Dozza, M. (2020). A comparison of computational driver models using naturalistic and test-track data from cyclist-overtaking manoeuvres. Transportation Research Part F: Traffic Psychology and Behaviour, 75, 87-105. https://doi.org/10.1016/j.trf.2020.09.020
  30. Lamble, D., Laakso, M., & Summala, H. (1999). Detection thresholds in car following situations and peripheral vision: Implications for positioning of visually demanding in-car displays. Ergonomics, 42(6), 807-815. https://doi.org/10.1080/001401399185306
  31. Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities? Vision Research, 41(25-26), 3559-3565. https://doi.org/10.1016/S0042- 6989(01)00102-X
  32. Land, M., & Horwood, J. (1995). Which parts of the road guide steering? Nature, 377(6547), 339-340. https://doi.org/10.1038/377339a0
  33. Lappi, O., & Mole, C. (2018). Visuomotor control, eye movements, and steering: A unified approach for incorporating feedback, feedforward, and internal models. Psychological Bulletin, 144(10), 981-1001. https://doi.org/10.1037/bul0000150
  34. Lee, D. N. (1976). A theory of visual control of braking based on information about time to collision. Perception, 5(4), 437-459. https://doi.org/10.1068/p050437
  35. Llewellyn, K. R. (1971). Visual guidance of locomotion. Journal of Experimental Psychology, 91(2), 245-261. https://doi.org/10.1037/h0031788
  36. Lo, S., & Andrews, S. (2015). To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01171
  37. Loram, I. D., Lakie, M., & Gawthrop, P. J. (2009). Visual control of stable and unstable loads: What is the feedback delay and extent of linear time-invariant control? Journal of Physiology, 587(6), 1343-1365. https://doi.org/10.1113/jphysiol.2008.166173
  38. Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 1494-1502. https://doi.org/10.3758/s13428-016-0809-y
  39. Markkula, G. (2014). Modeling driver control behavior in both routine and near-accident driving. Proceedings of the Human Factors and Ergonomics Society, 2014-Janua(1), 879-883. https://doi.org/10.1177/1541931214581185
  40. Markkula, G., Boer, E., Romano, R., & Merat, N. (2018). Sustained sensorimotor control as intermittent decisions about prediction errors: computational framework and application to ground vehicle steering. Biological Cybernetics, 112(3), 181-207. https://doi.org/10.1007/s00422-017-0743-9
  41. Markkula, G., Uludag, Z., McGilchrist Wilkie, R., & Billington, J. (2021). Accumulation of continuously time-varying sensory evidence constrains neural and behavioral responses in human collision threat detection. PLoS Computational Biology, 17(7). https://doi.org/10.1371/journal.pcbi.1009096
  42. Markkula, G., & Zgonnikov, A. (2019). Evidence Accumulation Account of Human Operators' Decisions in Intermittent Control During Inverted Pendulum Balancing. Eprints.Whiterose.Ac.Uk, 716-721. https://doi.org/10.1109/smc.2018.00130
  43. Martínez-García, M., Zhang, Y., & Gordon, T. (2016). Modeling Lane Keeping by a Hybrid Open-Closed-Loop Pulse Control Scheme. IEEE Transactions on Industrial Informatics, 12(6), 2256-2265. https://doi.org/10.1109/TII.2016.2619064
  44. Mole, C., Pekkanen, J., Sheppard, W., Louw, T., Romano, R., Merat, N., … Wilkie, R. (2020). Predicting takeover response to silent automated vehicle failures. PLOS ONE, 15(11), e0242825. https://doi.org/10.1371/journal.pone.0242825
  45. Nash, C. J., & Cole, D. J. (2018). Modelling the influence of sensory dynamics on linear and nonlinear driver steering control. Vehicle System Dynamics, 56(5), 689-718. https://doi.org/10.1080/00423114.2017.1326615
  46. O'Connell, R. G., Dockree, P., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal. Nature.Com. Retrieved from https://www.nature.com/neuro/journal/v15/n12/abs/nn.3248.html
  47. Polanía, R., Krajbich, I., Grueschow, M., & Ruff, C. C. (2014). Neural Oscillations and Synchronization Differentially Support Evidence Accumulation in Perceptual and Value- Based Decision Making. Neuron, 82(3), 709-720. https://doi.org/10.1016/j.neuron.2014.03.014
  48. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108. https://doi.org/10.1037/0033-295X.85.2.59
  49. Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion Decision Model: Current Issues and History. Trends in Cognitive Sciences, Vol. 20, pp. 260-281. https://doi.org/10.1016/j.tics.2016.01.007
  50. Salvucci, D. D., & Gray, R. (2004). A two-point visual control model of steering. Perception, 33(10), 1233-1248. https://doi.org/10.1068/p5343
  51. Salvucci, D. D., & Liu, A. (2002). The time course of a lane change: Driver control and eye- movement behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 5(2), 123-132. https://doi.org/10.1016/S1369-8478(02)00011-6
  52. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. https://doi.org/10.1021/ac60214a047
  53. Schafer, R. W. (2011). What is a savitzky-golay filter? IEEE Signal Processing Magazine, 28(4), 111-117. https://doi.org/10.1109/MSP.2011.941097
  54. Shadlen, M. N., & Newsome, W. T. (1996). Motion perception: Seeing and deciding. Proceedings of the National Academy of Sciences of the United States of America, 93(2), 628-633. https://doi.org/10.1073/pnas.93.2.628
  55. Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86(4), 1916-1936. https://doi.org/10.1152/jn.2001.86.4.1916
  56. Twomey, D. M., Murphy, P. R., Kelly, S. P., & O'Connell, R. G. (2015). The classic P300 encodes a build-to-threshold decision variable. European Journal of Neuroscience, 42(1), 1636-1643. https://doi.org/10.1111/ejn.12936
  57. Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108(3), 550-592. https://doi.org/10.1037/0033-295X.108.3.550
  58. van der El, K., Pool, D. M., & Mulder, M. (2019). Measuring and modeling driver steering behavior: From compensatory tracking to curve driving. Transportation Research Part F: Traffic Psychology and Behaviour, 61, 337-346. https://doi.org/10.1016/j.trf.2017.09.011
  59. Warren, W. H., Zosh, W. D., Sahuc, S., Duchon, A. P., & Kay, B. A. (2000). Optic flow vs. visual direction in the visual control of walking. Investigative Ophthalmology and Visual Science, 41, S812. Retrieved from http://www.cog.brown.edu/Research/ven_lab/present/ww_arvo00.pdf
  60. Wilkie, R. M., & Wann, J. P. (2002). Driving as night falls: The contribution of retinal flow and visual direction to the control of steering. Current Biology, 12(23), 2014-2017. https://doi.org/10.1016/S0960-9822(02)01337-4
  61. Wilkie, R. M., Wann, J. P., & Allison, R. S. (2008). Active Gaze, Visual Look-Ahead, and Locomotor Control. Journal of Experimental Psychology: Human Perception and Performance, 34(5), 1150-1164. https://doi.org/10.1037/0096-1523.34.5.1150
  62. Wilkie, R., & Wann, J. (2003). Controlling Steering and Judging Heading: Retinal Flow, Visual Direction, and Extraretinal Information. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 363-378. https://doi.org/10.1037/0096- 1523.29.2.363
  63. Xue, Q., Markkula, G., Yan, X., & Merat, N. (2018). Using perceptual cues for brake response to a lead vehicle: Comparing threshold and accumulator models of visual looming. Accident Analysis and Prevention, 118, 114-124. https://doi.org/10.1016/j.aap.2018.06.006
  64. Yilmaz, E. H., & Warren, W. H. (1995). Visual Control of Braking: A Test of the τ Hypothesis. Journal of Experimental Psychology: Human Perception and Performance, 21(5), 996- 1014. https://doi.org/10.1037/0096-1523.21.5.996
  65. Zgonnikov, A., Lubashevsky, I., Kanemoto, S., Miyazawa, T., & Suzuki, T. (2014). To react or not to react? Intrinsic stochasticity of human control in virtual stick balancing. Journal of the Royal Society Interface, 11(99), 20140636-20140636. https://doi.org/10.1098/rsif.2014.0636