Observational Validation of Cosmic Ray Acceleration Hypothesis
2023, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.2303.08651Abstract
Despite centuries of rigorous theoretical and observational research, the origin and acceleration mechanism of Galactic Cosmic Rays (GCRs) remain a mystery. In 1949, Fermi proposed a diffusive shock acceleration model that includes a prominent mechanism for GCR acceleration. However, observational evidence, on the other hand, remains elusive. Here, we provided the first apparent verification of GCR acceleration at 1 AU using measurements from the CRIS instrument onboard the ACE spacecraft.
References (50)
- Blackett, P. Cosmic rays. Nature 133, 640-641 (1934).
- Cronin, J. W. From spontaneous ionization to subatomic physics: Some vignettes from cosmic ray history. Astropart. Phys. 53, 6-18 (2014).
- Nagano, M. & Watson, A. A. Observations and implications of the ultrahigh-energy cosmic rays. Rev. Mod. Phys. 72, 689 (2000).
- Friedlander, M. A century of cosmic rays. Nature 483, 400-401 (2012).
- Sigl, G. Ultrahigh-energy cosmic rays: physics and astrophysics at extreme energies. Science 291, 73-79 (2001).
- Diehl, R. Particle acceleration in cosmic sites. The Eur. Phys. J. D 55, 509-518 (2009).
- Abraham, J. et al. Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science 318, 938-943 (2007).
- Abraham, J. et al. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart. Phys. 29, 188-204 (2008).
- Aharonian, F., Yang, R. & de Oña Wilhelmi, E. Massive stars as major factories of galactic cosmic rays. Nat. astronomy 3, 561-567 (2019).
- Ackermann, M. et al. A cocoon of freshly accelerated cosmic rays detected by fermi in the cygnus superbubble. science 334, 1103-1107 (2011).
- Abeysekara, A. et al. Hawc observations of the acceleration of very-high-energy cosmic rays in the cygnus cocoon. Nat. astronomy 5, 465-471 (2021).
- Hooper, D., Kolb, E. W. et al. Pierre auger data, photons, and top-down cosmic ray models. Phys. Rev. D 73, 123001 (2006).
- Havnes, O. Abundances and acceleration mechanisms of cosmic rays. Nature 229, 548-549 (1971).
- Ostrowski, M. Mechanisms and sites of ultra high energy cosmic ray origin. Astropart. Phys. 18, 229-236 (2002).
- Hillas, A. M. The origin of ultra-high-energy cosmic rays. Annu. review astronomy astrophysics 22, 425-444 (1984).
- Ptitsyna, K. V. & Troitsky, S. V. Physical conditions in potential accelerators of ultra-high-energy cosmic rays: updated hillas plot and radiation-loss constraints. Physics-Uspekhi 53, 691 (2010).
- Fermi, E. On the origin of the cosmic radiation. Phys. review 75, 1169 (1949).
- Blandford, R. & Eichler, D. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Reports 154, 1-75 (1987).
- Blandford, R. D. & Ostriker, J. P. Particle acceleration by astrophysical shocks. The Astrophys. J. 221, L29-L32 (1978).
- Schopper, R., Birk, G. T. & Lesch, H. High-energy hadronic acceleration in extragalactic radio jets. Astropart. Phys. 17, 347-354 (2002).
- Achterberg, A. Stochastic fermi acceleration and the origin of cosmic rays. Adv. Space Res. 4, 193-204 (1984).
- Palmer, I. Transport coefficients of low-energy cosmic rays in interplanetary space. Rev. Geophys. 20, 335-351 (1982).
- Lee, M. A., Mewaldt, R. & Giacalone, J. Shock acceleration of ions in the heliosphere. Space science reviews 173, 247-281 (2012).
- Petrosian, V. Stochastic acceleration by turbulence. Space science reviews 173, 535-556 (2012).
- Lichtenberg, A., Lieberman, M. & Cohen, R. Fermi acceleration revisited. Phys. D: Nonlinear Phenom. 1, 291-305 (1980).
- Ahn, H. et al. Energy spectra of cosmic-ray nuclei at high energies. The Astrophys. J. 707, 593 (2009).
- Ahlers, M., Mertsch, P. & Sarkar, S. Cosmic ray acceleration in supernova remnants and the fermi/pamela data. Phys. Rev. D 80, 123017 (2009).
- Evoli, C. G. et al. The role of turbulence in interstellar and intergalactic environments. (2010).
- Berezhko, E. & Taneev, S. Shock acceleration of solar cosmic rays. Astron. Lett. 29, 530-542 (2003).
- Armillotta, L., Ostriker, E. C. & Jiang, Y.-F. Cosmic-ray transport in varying galactic environments. arXiv preprint arXiv:2203.11949 (2022).
- Niemiec, J. & Ostrowski, M. Cosmic ray acceleration at ultrarelativistic shock waves: effects of a "realistic" magnetic field structure. The Astrophys. J. 641, 984 (2006).
- Sarris, E. T. & Van Allen, J. Effects of interplanetary shock waves on energetic charged particles. J. Geophys. research 79, 4157-4173 (1974).
- Sagdeev, R. Z. & Kennel, C. F. Collisionless shock waves. Sci. Am. 264, 106-115 (1991).
- Hillas, A. Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J. Phys. G: Nucl. Part. Phys. 31, R95 (2005).
- Slane, P., Bykov, A., Ellison, D. C., Dubner, G. & Castro, D. Supernova remnants interacting with molecular clouds: X-ray and gamma-ray signatures. Space Sci. Rev. 188, 187-210 (2015).
- Caprioli, D. Cosmic-ray acceleration in supernova remnants: non-linear theory revised. J. cosmology astroparticle physics 2012, 038 (2012).
- Meli, A. & Biermann, P. L. Active galactic nuclei jets and multiple oblique shock acceleration: starved spectra. Astron. & Astrophys. 556, A88 (2013).
- Vaquero, J. M. & Vázquez, M. The Sun recorded through history, vol. 361 (Springer Science & Business Media, 2009).
- Low, B. Magnetohydrodynamic processes in the solar corona: Flares, coronal mass ejections, and magnetic helicity. Phys. Plasmas 1, 1684-1690 (1994).
- Low, B. Coronal mass ejections, magnetic flux ropes, and solar magnetism. J. Geophys. Res. Space Phys. 106, 25141-25163 (2001).
- Kilpua, E., Koskinen, H. E. & Pulkkinen, T. I. Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Sol. Phys. 14, 1-83 (2017).
- Manchester IV, W. et al. Coronal mass ejection shock and sheath structures relevant to particle acceleration. The Astrophys. J. 622, 1225 (2005).
- Rouillard, A. Relating white light and in situ observations of coronal mass ejections: A review. J. Atmospheric Solar- Terrestrial Phys. 73, 1201-1213 (2011).
- Reiner, M., Kaiser, M. & Bougeret, J.-L. Coronal and interplanetary propagation of cme/shocks from radio, in situ and white-light observations. The Astrophys. J. 663, 1369 (2007).
- Stone, E. C. et al. The cosmic-ray isotope spectrometer for the advanced composition explorer. In The Advanced Composition Explorer Mission, 285-356 (Springer, 1998).
- Stone, E. C. et al. The advanced composition explorer. Space Sci. Rev. 86, 1-22 (1998).
- Zaharia, S., Cheng, C. & Johnson, J. R. Particle transport and energization associated with substorms. J. Geophys. Res. Space Phys. 105, 18741-18752 (2000).
- Klein, K.-L., Trottet, G. & Klassen, A. Energetic particle acceleration and propagation in strong cme-less flares. Sol. Phys. 263, 185-208 (2010).
- Rice, W., Zank, G. & Li, G. Particle acceleration and coronal mass ejection driven shocks: Shocks of arbitrary strength. J. Geophys. Res. Space Phys. 108 (2003).
- Achterberg, A. Particle acceleration at astrophysical shocks. In Symposium-International Astronomical Union, vol. 195, 291-301 (Cambridge University Press, 2000).