Academia.eduAcademia.edu

Outline

Observational Validation of Cosmic Ray Acceleration Hypothesis

2023, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.2303.08651

Abstract

Despite centuries of rigorous theoretical and observational research, the origin and acceleration mechanism of Galactic Cosmic Rays (GCRs) remain a mystery. In 1949, Fermi proposed a diffusive shock acceleration model that includes a prominent mechanism for GCR acceleration. However, observational evidence, on the other hand, remains elusive. Here, we provided the first apparent verification of GCR acceleration at 1 AU using measurements from the CRIS instrument onboard the ACE spacecraft.

References (50)

  1. Blackett, P. Cosmic rays. Nature 133, 640-641 (1934).
  2. Cronin, J. W. From spontaneous ionization to subatomic physics: Some vignettes from cosmic ray history. Astropart. Phys. 53, 6-18 (2014).
  3. Nagano, M. & Watson, A. A. Observations and implications of the ultrahigh-energy cosmic rays. Rev. Mod. Phys. 72, 689 (2000).
  4. Friedlander, M. A century of cosmic rays. Nature 483, 400-401 (2012).
  5. Sigl, G. Ultrahigh-energy cosmic rays: physics and astrophysics at extreme energies. Science 291, 73-79 (2001).
  6. Diehl, R. Particle acceleration in cosmic sites. The Eur. Phys. J. D 55, 509-518 (2009).
  7. Abraham, J. et al. Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science 318, 938-943 (2007).
  8. Abraham, J. et al. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart. Phys. 29, 188-204 (2008).
  9. Aharonian, F., Yang, R. & de Oña Wilhelmi, E. Massive stars as major factories of galactic cosmic rays. Nat. astronomy 3, 561-567 (2019).
  10. Ackermann, M. et al. A cocoon of freshly accelerated cosmic rays detected by fermi in the cygnus superbubble. science 334, 1103-1107 (2011).
  11. Abeysekara, A. et al. Hawc observations of the acceleration of very-high-energy cosmic rays in the cygnus cocoon. Nat. astronomy 5, 465-471 (2021).
  12. Hooper, D., Kolb, E. W. et al. Pierre auger data, photons, and top-down cosmic ray models. Phys. Rev. D 73, 123001 (2006).
  13. Havnes, O. Abundances and acceleration mechanisms of cosmic rays. Nature 229, 548-549 (1971).
  14. Ostrowski, M. Mechanisms and sites of ultra high energy cosmic ray origin. Astropart. Phys. 18, 229-236 (2002).
  15. Hillas, A. M. The origin of ultra-high-energy cosmic rays. Annu. review astronomy astrophysics 22, 425-444 (1984).
  16. Ptitsyna, K. V. & Troitsky, S. V. Physical conditions in potential accelerators of ultra-high-energy cosmic rays: updated hillas plot and radiation-loss constraints. Physics-Uspekhi 53, 691 (2010).
  17. Fermi, E. On the origin of the cosmic radiation. Phys. review 75, 1169 (1949).
  18. Blandford, R. & Eichler, D. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Reports 154, 1-75 (1987).
  19. Blandford, R. D. & Ostriker, J. P. Particle acceleration by astrophysical shocks. The Astrophys. J. 221, L29-L32 (1978).
  20. Schopper, R., Birk, G. T. & Lesch, H. High-energy hadronic acceleration in extragalactic radio jets. Astropart. Phys. 17, 347-354 (2002).
  21. Achterberg, A. Stochastic fermi acceleration and the origin of cosmic rays. Adv. Space Res. 4, 193-204 (1984).
  22. Palmer, I. Transport coefficients of low-energy cosmic rays in interplanetary space. Rev. Geophys. 20, 335-351 (1982).
  23. Lee, M. A., Mewaldt, R. & Giacalone, J. Shock acceleration of ions in the heliosphere. Space science reviews 173, 247-281 (2012).
  24. Petrosian, V. Stochastic acceleration by turbulence. Space science reviews 173, 535-556 (2012).
  25. Lichtenberg, A., Lieberman, M. & Cohen, R. Fermi acceleration revisited. Phys. D: Nonlinear Phenom. 1, 291-305 (1980).
  26. Ahn, H. et al. Energy spectra of cosmic-ray nuclei at high energies. The Astrophys. J. 707, 593 (2009).
  27. Ahlers, M., Mertsch, P. & Sarkar, S. Cosmic ray acceleration in supernova remnants and the fermi/pamela data. Phys. Rev. D 80, 123017 (2009).
  28. Evoli, C. G. et al. The role of turbulence in interstellar and intergalactic environments. (2010).
  29. Berezhko, E. & Taneev, S. Shock acceleration of solar cosmic rays. Astron. Lett. 29, 530-542 (2003).
  30. Armillotta, L., Ostriker, E. C. & Jiang, Y.-F. Cosmic-ray transport in varying galactic environments. arXiv preprint arXiv:2203.11949 (2022).
  31. Niemiec, J. & Ostrowski, M. Cosmic ray acceleration at ultrarelativistic shock waves: effects of a "realistic" magnetic field structure. The Astrophys. J. 641, 984 (2006).
  32. Sarris, E. T. & Van Allen, J. Effects of interplanetary shock waves on energetic charged particles. J. Geophys. research 79, 4157-4173 (1974).
  33. Sagdeev, R. Z. & Kennel, C. F. Collisionless shock waves. Sci. Am. 264, 106-115 (1991).
  34. Hillas, A. Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J. Phys. G: Nucl. Part. Phys. 31, R95 (2005).
  35. Slane, P., Bykov, A., Ellison, D. C., Dubner, G. & Castro, D. Supernova remnants interacting with molecular clouds: X-ray and gamma-ray signatures. Space Sci. Rev. 188, 187-210 (2015).
  36. Caprioli, D. Cosmic-ray acceleration in supernova remnants: non-linear theory revised. J. cosmology astroparticle physics 2012, 038 (2012).
  37. Meli, A. & Biermann, P. L. Active galactic nuclei jets and multiple oblique shock acceleration: starved spectra. Astron. & Astrophys. 556, A88 (2013).
  38. Vaquero, J. M. & Vázquez, M. The Sun recorded through history, vol. 361 (Springer Science & Business Media, 2009).
  39. Low, B. Magnetohydrodynamic processes in the solar corona: Flares, coronal mass ejections, and magnetic helicity. Phys. Plasmas 1, 1684-1690 (1994).
  40. Low, B. Coronal mass ejections, magnetic flux ropes, and solar magnetism. J. Geophys. Res. Space Phys. 106, 25141-25163 (2001).
  41. Kilpua, E., Koskinen, H. E. & Pulkkinen, T. I. Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Sol. Phys. 14, 1-83 (2017).
  42. Manchester IV, W. et al. Coronal mass ejection shock and sheath structures relevant to particle acceleration. The Astrophys. J. 622, 1225 (2005).
  43. Rouillard, A. Relating white light and in situ observations of coronal mass ejections: A review. J. Atmospheric Solar- Terrestrial Phys. 73, 1201-1213 (2011).
  44. Reiner, M., Kaiser, M. & Bougeret, J.-L. Coronal and interplanetary propagation of cme/shocks from radio, in situ and white-light observations. The Astrophys. J. 663, 1369 (2007).
  45. Stone, E. C. et al. The cosmic-ray isotope spectrometer for the advanced composition explorer. In The Advanced Composition Explorer Mission, 285-356 (Springer, 1998).
  46. Stone, E. C. et al. The advanced composition explorer. Space Sci. Rev. 86, 1-22 (1998).
  47. Zaharia, S., Cheng, C. & Johnson, J. R. Particle transport and energization associated with substorms. J. Geophys. Res. Space Phys. 105, 18741-18752 (2000).
  48. Klein, K.-L., Trottet, G. & Klassen, A. Energetic particle acceleration and propagation in strong cme-less flares. Sol. Phys. 263, 185-208 (2010).
  49. Rice, W., Zank, G. & Li, G. Particle acceleration and coronal mass ejection driven shocks: Shocks of arbitrary strength. J. Geophys. Res. Space Phys. 108 (2003).
  50. Achterberg, A. Particle acceleration at astrophysical shocks. In Symposium-International Astronomical Union, vol. 195, 291-301 (Cambridge University Press, 2000).