Academia.eduAcademia.edu

Outline

Definability of Polyadic Lifts of Generalized Quantifiers

1997, Journal of Logic, Language and Information

https://doi.org/10.1023/A:1008215718090

Abstract

We study generalized quantifiers on finite structures.With every function $$f$$ : ? ? ?we associate a quantifier Q $$_{\text{f}} $$ by letting Q $$_{\text{f}} $$ x? say “there are at least $$_{\text{f}} $$ (n) elementsx satisfying ?, where n is the sizeof the universe.” This is the general form ofwhat is known as a monotone quantifier of type .We study

References (22)

  1. J. Barwise, On branching quantifiers in English, Journal of Philosophical Logic 8 (1979), 47-80.
  2. J. Cai, M. Fürer, and N. Immerman, An optimal lower bound on the number of variables for graph identification. Combinatorica 12 (1992), 389-410.
  3. X. Caicedo, Maximality and Interpolation in Abstract Logic, Ph. D. dis- sertation, Univ. of Maryland, 1978.
  4. A. Dawar, Generalized quantifiers and logical reducibilities, Journal of Logic and Computation 5 (1995), 213-226.
  5. R. Fagin, Monadic generalized spectra, Zeitschrift für Mathematische Logik und Grundlagenforschung 21 (1975), 89-96.
  6. L. Hella, Definability hierarchies of generalized quantifiers, Annals of Pure and Applied Logic 43 (1989), 235-271.
  7. L. Hella, Logical hierarchies in PTIME, Information and Computation 129 (1996), 1-19.
  8. L. Hella, K. Luosto and J. Väänänen, The hierarchy theorem for gener- alized quantifiers, The Journal of Symbolic Logic, to appear.
  9. L. Hella and G. Sandu, Partially ordered connectives and finite graphs, in M. Krynicki, M. Mostowski and L. Szczerba (editors) Quantifiers: Logics, Models and Computation, vol. II, Kluwer, 1995, 79-88.
  10. E. L. Keenan and D. Westerståhl, Generalized quantifiers in linguistics and logic, in J. van Benthem and A. ter Meulen (editors), Handbook of Logic and Language, Elsevier, Amsterdam, 1996, 837-893.
  11. Ph. G. Kolaitis and J. Väänänen, Generalized quantifiers and pebble games on finite structures, Annals of Pure and Applied Logic 74 (1995), 23-75.
  12. M. Krynicki, A. Lachlan and J. Väänänen, Vector spaces and binary quantifiers, Notre Dame Journal of Formal Logic 25 (1984), 72-78.
  13. P. Lindström, First order predicate logic with generalized quantifiers, Theoria 32 (1966), 186-195.
  14. P. Lindström, On extensions of elementary logic, Theoria 35 (1969), 1-11.
  15. K. Luosto, Hierarchies of monadic generalized quantifiers, Reports of the Department of Mathematics, University of Helsinki, Preprint 125, 1996.
  16. J. Makowsky and Y. Pnueli, Computable quantifiers and logics over finite structures, in M. Krynicki, M. Mostowski and L. Szczerba (editors) Quantifiers: Logics, Models and Computation, vol. I, Kluwer, 1995, 313- 357.
  17. M. Mostowski, The logic of divisibility, The Journal of Symbolic Logic, to appear.
  18. J. Nurmonen, On winning strategies with unary quantifiers, Journal of Logic and Computation, to appear.
  19. J. Väänänen, Unary quantifiers on finite models, Reports of the Depart- ment of Mathematics, University of Helsinki , Preprint 101, 1996.
  20. D. Westerståhl, Quantifiers in formal and natural languages, in D. Gab- bay and F. Guenthner (editors), Handbook of Philosophical Logic, vol. IV, Dordrecht, Reidel, 1989, 1-131.
  21. D. Westerståhl, Relativization of quantifiers in finite models, in J. van der Does and J. van Eijck (editors), Generalized Quantifier Theory and Applications, ILLC, Univ. of Amsterdam, 1991, 187-205. Also in Quan- tifiers, Logic and Language (same editors), CSLI Publications, Stanford, 1996, 375-383.
  22. D. Westerståhl, Quantifiers in natural language -a survey of some recent work, in M. Krynicki, M. Mostowski and L. Szczerba (editors) Quantifiers: Logics, Models and Computation, vol. I, Kluwer, 1995, 359- 408.