Definability of Polyadic Lifts of Generalized Quantifiers
1997, Journal of Logic, Language and Information
https://doi.org/10.1023/A:1008215718090Abstract
We study generalized quantifiers on finite structures.With every function $$f$$ : ? ? ?we associate a quantifier Q $$_{\text{f}} $$ by letting Q $$_{\text{f}} $$ x? say “there are at least $$_{\text{f}} $$ (n) elementsx satisfying ?, where n is the sizeof the universe.” This is the general form ofwhat is known as a monotone quantifier of type .We study
References (22)
- J. Barwise, On branching quantifiers in English, Journal of Philosophical Logic 8 (1979), 47-80.
- J. Cai, M. Fürer, and N. Immerman, An optimal lower bound on the number of variables for graph identification. Combinatorica 12 (1992), 389-410.
- X. Caicedo, Maximality and Interpolation in Abstract Logic, Ph. D. dis- sertation, Univ. of Maryland, 1978.
- A. Dawar, Generalized quantifiers and logical reducibilities, Journal of Logic and Computation 5 (1995), 213-226.
- R. Fagin, Monadic generalized spectra, Zeitschrift für Mathematische Logik und Grundlagenforschung 21 (1975), 89-96.
- L. Hella, Definability hierarchies of generalized quantifiers, Annals of Pure and Applied Logic 43 (1989), 235-271.
- L. Hella, Logical hierarchies in PTIME, Information and Computation 129 (1996), 1-19.
- L. Hella, K. Luosto and J. Väänänen, The hierarchy theorem for gener- alized quantifiers, The Journal of Symbolic Logic, to appear.
- L. Hella and G. Sandu, Partially ordered connectives and finite graphs, in M. Krynicki, M. Mostowski and L. Szczerba (editors) Quantifiers: Logics, Models and Computation, vol. II, Kluwer, 1995, 79-88.
- E. L. Keenan and D. Westerståhl, Generalized quantifiers in linguistics and logic, in J. van Benthem and A. ter Meulen (editors), Handbook of Logic and Language, Elsevier, Amsterdam, 1996, 837-893.
- Ph. G. Kolaitis and J. Väänänen, Generalized quantifiers and pebble games on finite structures, Annals of Pure and Applied Logic 74 (1995), 23-75.
- M. Krynicki, A. Lachlan and J. Väänänen, Vector spaces and binary quantifiers, Notre Dame Journal of Formal Logic 25 (1984), 72-78.
- P. Lindström, First order predicate logic with generalized quantifiers, Theoria 32 (1966), 186-195.
- P. Lindström, On extensions of elementary logic, Theoria 35 (1969), 1-11.
- K. Luosto, Hierarchies of monadic generalized quantifiers, Reports of the Department of Mathematics, University of Helsinki, Preprint 125, 1996.
- J. Makowsky and Y. Pnueli, Computable quantifiers and logics over finite structures, in M. Krynicki, M. Mostowski and L. Szczerba (editors) Quantifiers: Logics, Models and Computation, vol. I, Kluwer, 1995, 313- 357.
- M. Mostowski, The logic of divisibility, The Journal of Symbolic Logic, to appear.
- J. Nurmonen, On winning strategies with unary quantifiers, Journal of Logic and Computation, to appear.
- J. Väänänen, Unary quantifiers on finite models, Reports of the Depart- ment of Mathematics, University of Helsinki , Preprint 101, 1996.
- D. Westerståhl, Quantifiers in formal and natural languages, in D. Gab- bay and F. Guenthner (editors), Handbook of Philosophical Logic, vol. IV, Dordrecht, Reidel, 1989, 1-131.
- D. Westerståhl, Relativization of quantifiers in finite models, in J. van der Does and J. van Eijck (editors), Generalized Quantifier Theory and Applications, ILLC, Univ. of Amsterdam, 1991, 187-205. Also in Quan- tifiers, Logic and Language (same editors), CSLI Publications, Stanford, 1996, 375-383.
- D. Westerståhl, Quantifiers in natural language -a survey of some recent work, in M. Krynicki, M. Mostowski and L. Szczerba (editors) Quantifiers: Logics, Models and Computation, vol. I, Kluwer, 1995, 359- 408.