Academia.eduAcademia.edu

Outline

MyWay: Location prediction via mobility profiling

2017, Information Systems

https://doi.org/10.1016/J.IS.2015.11.002

Abstract

Forecasting the future positions of mobile users is a valuable task allowing to operate efficiently a myriad of different applications which need this type of information. We propose MyWay, a prediction system which exploits the individual systematic behaviors modeled by mobility profiles to predict human movements. MyWay provides three strategies: the individual strategy uses only the user individual mobility profile, the collective strategy takes advantage of all users individual systematic behaviors, and the hierarchical strategy that is a combination of the previous two. A key point is that MyWay only requires the sharing of individual mobility profiles, a concise representation of the user's movements, instead of raw trajectory data revealing the detailed movement of the users. We evaluate the prediction performances of our proposal by a deep experimentation on large real-world data. The results highlight that the synergy between the individual and collective knowledge is the key for a better prediction and allow the system to outperform the state-of-art methods.

References (40)

  1. C. Song, Z. Qu, N. Blumm, A.-L. Barabási, Limits of predictability in human mobility, Science 327 (5968).
  2. M. C. Gonzalez, C. A. Hidalgo, A.-L. Barabasi, Understanding individual human mobility patterns, Nature 453 (7196).
  3. R. Trasarti, F. Pinelli, M. Nanni, F. Giannotti, Mining mobility user pro- files for car pooling, in: C. Apté, J. Ghosh, P. Smyth (Eds.), KDD, ACM, 2011.
  4. S. Scellato, M. Musolesi, C. Mascolo, V. Latora, A. T. Campbell, Nextplace: A spatio-temporal prediction framework for pervasive systems, in: Perva- sive, 2011.
  5. M. Ceci, A. Appice, D. Malerba, Time-slice density estimation for semantic- based tourist destination suggestion, in: ECAI, 2010.
  6. M. Nishino, Y. Nakamura, T. Yagi, S. yo Muto, M. Abe, A location pre- dictor based on dependencies between multiple lifelog data, in: GIS-LBSN, 2010.
  7. T. Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades, Mobility prediction based on machine learning, in: MDM, 2011.
  8. L.-H. Tran, M. Catasta, L. K. McDowell, K. Aberer, Next place prediction using mobile data, Nokia Mobile Data Challenge.
  9. Y. Zhu, Y. Sun, Y. Wang, Predicting semantic place and next place via mobile data, Nokia Mobile Data Challenge.
  10. S.-W. Kim, J.-I. Won, J.-D. Kim, M. Shin, J. Lee, H. Kim, Path prediction of moving objects on road networks through analyzing past trajectories, in: KES (1), 2007.
  11. H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, Path prediction and predictive range querying in road network databases, VLDB J. 19 (4).
  12. J. B. Gomes, C. Phua, S. Krishnaswamy, Where will you go? mobile data mining for next place prediction, in: DaWaK, 2013.
  13. M. Lin, W. Hsu, Brownian bridge model for high resolution location pre- dictions, in: PAKDD, 2014.
  14. N. Yang, X. Kong, F. Wang, P. S. Yu, When and where: Predicting human movements based on social spatial-temporal events, in: SIAM, 2014.
  15. J. J.-C. Ying, W.-C. Lee, T.-C. Weng, V. S. Tseng, Semantic trajectory mining for location prediction, in: GIS, 2011.
  16. D. Domenico, Lima, Musolesi, Interdependence and predictability of human mobility and social interactions, Nokia Mobile Data Challenge.
  17. J. Krumm, E. Horvitz, Predestination: inferring destinations from partial trajectories, in: UbiComp'06, 2006.
  18. M. Morzy, Prediction of moving object location based on frequent trajec- tories, in: ISCIS, 2006.
  19. M. Morzy, Mining frequent trajectories of moving objects for location pre- diction, in: MLDM, 2007.
  20. G. Yavas, D. Katsaros, Ö. Ulusoy, Y. Manolopoulos, A data mining ap- proach for location prediction in mobile environments, DKE.
  21. H. Jeung, Q. Liu, H. T. Shen, X. Zhou, A hybrid prediction model for moving objects, in: ICDE, 2008.
  22. A. Monreale, F. Pinelli, R. Trasarti, F. Giannotti, Wherenext: a location predictor on trajectory pattern mining, in: KDD, 2009.
  23. E. H.-C. Lu, V. S. Tseng, P. S. Yu, Mining cluster-based temporal mobile sequential patterns in location-based service environments, IEEE Trans. Knowl. Data Eng. 23 (6).
  24. L. Chen, M. Lv, G. Chen, A system for destination and future route pre- diction based on trajectory mining, Pervasive and Mobile Computing 6 (6).
  25. P.-R. Lei, T.-J. Shen, W.-C. Peng, I.-J. Su, Exploring spatial-temporal trajectory model for location prediction, in: MDM, 2011.
  26. H.-S. Y. Juyoung Kang, A frequent pattern based prediction model for moving objects, IJCSNS 10 (3).
  27. H. Li, C. Tang, S. Qiao, Y. Wang, N. Yang, C. Li, Hotspot district trajec- tory prediction, in: WAIM, 2010.
  28. I. Burbey, Predicting future locations and arrival times of individuals, PhD thesis, Virginia Polytechnic Institute and State University.
  29. D. Qiu, P. Papotti, L. Blanco, Future locations prediction with uncertain data, in: ECML/PKDD (1), 2013.
  30. G. Gidófalvi, F. Dong, When and where next: individual mobility predic- tion, in: MobiGIS '12, 2012.
  31. G. Xue, Y. Luo, J. Yu, M. Li, A novel vehicular location prediction based on mobility patterns for routing in urban vanet, EURASIP J. Wireless Comm. and Networking.
  32. N. Zhao, W. Huang, G. Song, K. Xie, Discrete trajectory prediction on mobile data, in: APWeb, 2011.
  33. D. Ashbrook, T. Starner, Using gps to learn significant locations and predict movement across multiple users, Personal Ubiquitous Computing 7 (5).
  34. D. Barth, S. Bellahsene, L. Kloul, Combining local and global profiles for mobility prediction in lte femtocells, in: MSWiM, 2012.
  35. M. Chen, Y. Liu, X. Yu, NLPMM: A next location predictor with markov modeling, in: PAKDD, 2014.
  36. T. M. T. Do, D. Gatica-Perez, Where and what: Using smartphones to predict next locations and applications in daily life, Pervasive and Mobile Computing.
  37. M. Ankerst, M. M. Breunig, H.-P. Kriegel, J. Sander, Optics: Ordering points to identify the clustering structure, in: ACM Sigmod Record, ACM, 1999.
  38. World-Economic-Forum, Unlocking the value of personal data: From col- lection to usage, www.weforum.org , 2013.
  39. G. L. Andrienko, N. V. Andrienko, S. Rinzivillo, M. Nanni, D. Pedreschi, F. Giannotti, Interactive visual clustering of large collections of trajectories, in: IEEE VAST, 2009.
  40. F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S. Rinzivillo, R. Trasarti, Unveiling the complexity of human mobility by querying and mining massive trajectory data, VLDB J. 20 (5).