MyWay: Location prediction via mobility profiling
2017, Information Systems
https://doi.org/10.1016/J.IS.2015.11.002Abstract
Forecasting the future positions of mobile users is a valuable task allowing to operate efficiently a myriad of different applications which need this type of information. We propose MyWay, a prediction system which exploits the individual systematic behaviors modeled by mobility profiles to predict human movements. MyWay provides three strategies: the individual strategy uses only the user individual mobility profile, the collective strategy takes advantage of all users individual systematic behaviors, and the hierarchical strategy that is a combination of the previous two. A key point is that MyWay only requires the sharing of individual mobility profiles, a concise representation of the user's movements, instead of raw trajectory data revealing the detailed movement of the users. We evaluate the prediction performances of our proposal by a deep experimentation on large real-world data. The results highlight that the synergy between the individual and collective knowledge is the key for a better prediction and allow the system to outperform the state-of-art methods.
References (40)
- C. Song, Z. Qu, N. Blumm, A.-L. Barabási, Limits of predictability in human mobility, Science 327 (5968).
- M. C. Gonzalez, C. A. Hidalgo, A.-L. Barabasi, Understanding individual human mobility patterns, Nature 453 (7196).
- R. Trasarti, F. Pinelli, M. Nanni, F. Giannotti, Mining mobility user pro- files for car pooling, in: C. Apté, J. Ghosh, P. Smyth (Eds.), KDD, ACM, 2011.
- S. Scellato, M. Musolesi, C. Mascolo, V. Latora, A. T. Campbell, Nextplace: A spatio-temporal prediction framework for pervasive systems, in: Perva- sive, 2011.
- M. Ceci, A. Appice, D. Malerba, Time-slice density estimation for semantic- based tourist destination suggestion, in: ECAI, 2010.
- M. Nishino, Y. Nakamura, T. Yagi, S. yo Muto, M. Abe, A location pre- dictor based on dependencies between multiple lifelog data, in: GIS-LBSN, 2010.
- T. Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades, Mobility prediction based on machine learning, in: MDM, 2011.
- L.-H. Tran, M. Catasta, L. K. McDowell, K. Aberer, Next place prediction using mobile data, Nokia Mobile Data Challenge.
- Y. Zhu, Y. Sun, Y. Wang, Predicting semantic place and next place via mobile data, Nokia Mobile Data Challenge.
- S.-W. Kim, J.-I. Won, J.-D. Kim, M. Shin, J. Lee, H. Kim, Path prediction of moving objects on road networks through analyzing past trajectories, in: KES (1), 2007.
- H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, Path prediction and predictive range querying in road network databases, VLDB J. 19 (4).
- J. B. Gomes, C. Phua, S. Krishnaswamy, Where will you go? mobile data mining for next place prediction, in: DaWaK, 2013.
- M. Lin, W. Hsu, Brownian bridge model for high resolution location pre- dictions, in: PAKDD, 2014.
- N. Yang, X. Kong, F. Wang, P. S. Yu, When and where: Predicting human movements based on social spatial-temporal events, in: SIAM, 2014.
- J. J.-C. Ying, W.-C. Lee, T.-C. Weng, V. S. Tseng, Semantic trajectory mining for location prediction, in: GIS, 2011.
- D. Domenico, Lima, Musolesi, Interdependence and predictability of human mobility and social interactions, Nokia Mobile Data Challenge.
- J. Krumm, E. Horvitz, Predestination: inferring destinations from partial trajectories, in: UbiComp'06, 2006.
- M. Morzy, Prediction of moving object location based on frequent trajec- tories, in: ISCIS, 2006.
- M. Morzy, Mining frequent trajectories of moving objects for location pre- diction, in: MLDM, 2007.
- G. Yavas, D. Katsaros, Ö. Ulusoy, Y. Manolopoulos, A data mining ap- proach for location prediction in mobile environments, DKE.
- H. Jeung, Q. Liu, H. T. Shen, X. Zhou, A hybrid prediction model for moving objects, in: ICDE, 2008.
- A. Monreale, F. Pinelli, R. Trasarti, F. Giannotti, Wherenext: a location predictor on trajectory pattern mining, in: KDD, 2009.
- E. H.-C. Lu, V. S. Tseng, P. S. Yu, Mining cluster-based temporal mobile sequential patterns in location-based service environments, IEEE Trans. Knowl. Data Eng. 23 (6).
- L. Chen, M. Lv, G. Chen, A system for destination and future route pre- diction based on trajectory mining, Pervasive and Mobile Computing 6 (6).
- P.-R. Lei, T.-J. Shen, W.-C. Peng, I.-J. Su, Exploring spatial-temporal trajectory model for location prediction, in: MDM, 2011.
- H.-S. Y. Juyoung Kang, A frequent pattern based prediction model for moving objects, IJCSNS 10 (3).
- H. Li, C. Tang, S. Qiao, Y. Wang, N. Yang, C. Li, Hotspot district trajec- tory prediction, in: WAIM, 2010.
- I. Burbey, Predicting future locations and arrival times of individuals, PhD thesis, Virginia Polytechnic Institute and State University.
- D. Qiu, P. Papotti, L. Blanco, Future locations prediction with uncertain data, in: ECML/PKDD (1), 2013.
- G. Gidófalvi, F. Dong, When and where next: individual mobility predic- tion, in: MobiGIS '12, 2012.
- G. Xue, Y. Luo, J. Yu, M. Li, A novel vehicular location prediction based on mobility patterns for routing in urban vanet, EURASIP J. Wireless Comm. and Networking.
- N. Zhao, W. Huang, G. Song, K. Xie, Discrete trajectory prediction on mobile data, in: APWeb, 2011.
- D. Ashbrook, T. Starner, Using gps to learn significant locations and predict movement across multiple users, Personal Ubiquitous Computing 7 (5).
- D. Barth, S. Bellahsene, L. Kloul, Combining local and global profiles for mobility prediction in lte femtocells, in: MSWiM, 2012.
- M. Chen, Y. Liu, X. Yu, NLPMM: A next location predictor with markov modeling, in: PAKDD, 2014.
- T. M. T. Do, D. Gatica-Perez, Where and what: Using smartphones to predict next locations and applications in daily life, Pervasive and Mobile Computing.
- M. Ankerst, M. M. Breunig, H.-P. Kriegel, J. Sander, Optics: Ordering points to identify the clustering structure, in: ACM Sigmod Record, ACM, 1999.
- World-Economic-Forum, Unlocking the value of personal data: From col- lection to usage, www.weforum.org , 2013.
- G. L. Andrienko, N. V. Andrienko, S. Rinzivillo, M. Nanni, D. Pedreschi, F. Giannotti, Interactive visual clustering of large collections of trajectories, in: IEEE VAST, 2009.
- F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S. Rinzivillo, R. Trasarti, Unveiling the complexity of human mobility by querying and mining massive trajectory data, VLDB J. 20 (5).