Academia.eduAcademia.edu

Outline

Incremental Condition Estimation

1990, SIAM Journal on Matrix Analysis and Applications

https://doi.org/10.1137/0611021

Abstract

This paper presents an improved version of incremental condition estimation, a technique for tracking the extremal singular values of a triangular matrix as it is being constructed one column at a time. We present a new motivation for this estimation technique using orthogonal projections. The paper focuses on an implementation of this estimation scheme in an accurate and consistent fashion. In particular, we address the subtle numerical issues arising in the computation of the eigensystem of a symmetric rank-one perturbed diagonal 22 matrix. Experimental results show that the resulting scheme does a good job in estimating the extremal singular values of triangular matrices, independent of matrix size and matrix condition number, and that it performs qualitatively in the same fashion as some of the commonly used nonincremental condition estimation schemes.

References (28)

  1. Edward Anderson, Zhaojun Bai, Christian Bischof, James Demmel, Jack Dongarra, Jeremy DuCroz, Anne Greenbaum, Sven Hammarling, Alan McKenney, and Danny Sorensen. LA- PACK: A portable linear algebra library for high-performance computers. In Joanne Martin, editor, SUPERCOMPUTING '90, pages 2 10, New York, 1990. ACM Press. Also LAPACK working note 20, CS-90-105.
  2. Christian Bischof, James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, and Danny Sorensen. LAPACK Working Note 5: Provisional contents. Tech- nical Report ANL 88 38, Argonne National Laboratory, Mathematics and Computer Science Division, September 1988.
  3. Christian H. Bischof. A parallel QR factorization algorithm with controlled local pivoting. Tech- nical Report ANL MCS P21 1088, Argonne National Laboratory, Mathematics and Computer Science Division, 1988.
  4. Christian H. Bischof. A block QR factorization algorithm using restricted pivoting. In Proceed- ings SUPERCOMPUTING '89, pages 248 256, Baltimore, MD, 1989. ACM Press.
  5. Christian H. Bischof. Incremental condition estimation. SIAM Journal on Matrix Analysis and Applications, 112:312 322, 1990.
  6. Christian H. Bischof and Per Christian Hansen. Structure-preserving and rank-revealing QR factorizations. Preprint MCS-P100-0989, Argonne National Laboratory, Mathematics and Com- puter Science Division, September 1989.
  7. Christian H. Bischof, Daniel J. Pierce, and John G. Lewis. Incremental condition estimation for sparse matrices. SIAM Journal on Matrix Analysis and Applications, 114:644 659, 1990.
  8. Christian H. Bischof and Gautam M. Shro . On updating signal subspaces. Preprint MCS-P101- 0989, Argonne National Laboratory, Mathematics and Computer Science Division, September 1989.
  9. Ake Bj orck. Di erence Methods Solutions of Equations in R n , v olume I of Handbook of Numerical Analysis, c hapter Least Squares Methods. Elsevier Publishers, 1990.
  10. James R. Bunch, Christopher R. Nielsen, and Danny C. Sorensen. Rank-one modi cation of the symmetric eigenproblem. Numerische Mathematik, 31:31 48, 1978.
  11. P. A. Businger and G. H. Golub. Linear least squares solution by Householder transformation. Numerische Mathematik, 7:269 276, 1965.
  12. A. K. Cline, A. R. Conn, and C. F. Van Loan. Generalizing the LINPACK Condition Estimator, volume 909 of Lecture Notes in Mathematics, pages 73 83. Springer Verlag, 1982.
  13. A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson. An estimate for the condition number of a matrix. SIAM Journal on Numerical Analysis, 16:368 375, 1979.
  14. William Ferng, Gene H. Golub, and Robert J. Plemmons. Adaptive Lanczos methods for recursive condition estimation. In SPIE Volume 1348, Advanced Signal-Processing Algorithms, Architectures, and Implementations, pages 326 337, Washington, D. C., 1990. The International Society for Optical Engineering.
  15. P. E. Gill and W. Murray. A n umerically stable form of the simplex method. Linear Algebra and Its Applications, 7:99 138, 1973.
  16. P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix factorizations. Mathematics of Computation, 28:505 535, 1974.
  17. Gene H. Golub. Numerical methods for solving linear least squares problems. Numerische Mathematik, 7:206 216, 1965.
  18. Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press, 1983, Baltimore.
  19. Nicholas J. Higham. E cient algorithms for computing the condition number of a tridiagonal matrix. SIAM Journal on Scienti c and Statistical Computing, 7:150 165, 1986.
  20. Nicholas J. Higham. A survey of condition number estimation for triangular matrices. SIAM Review, 294:575 596, 1987.
  21. Nicholas J. Higham. FORTRAN codes for estimating the one-norm of a real or complex ma- trix, with applications to condition estimation. ACM Transactions on Mathematical Software, 144:381 396, 1988.
  22. Nicholas J. Higham. Experience with a matrix norm estimator. SIAM Journal on Scienti c and Statistical Computing, 1990. to appear.
  23. Charles L. Lawson and Richard J. Hanson. Solving Least Squares Problems. Prentice-Hall, Englewood Cli s, N.J., 1974.
  24. Daniel J. Pierce and Robert J. Plemmons. Fast adaptive condition estimation. Technical Report ECA-TR-146, Boeing Computer Services, Engineering and Scienti c Services Division, October 1990.
  25. Daniel J. Pierce and Robert J. Plemmons. Tracking the condition number for RLS in signal pro- cessing. Technical Report ECA-TR-134, Boeing Computer Services, Engineering and Scienti c Services Division, March 1990.
  26. Gautam M. Shro and Christian H. Bischof. Adaptive condition estimation for rank-one updates of QR factorizations. Preprint MCS-P166-0790, Argonne National Laboratory, Mathematics and Computer Science Division, 1990.
  27. G. W. Stewart. The e cient generation of random orthogonal matrices with an application to condition estimators. SIAM Journal on Numerical Analysis, 17:403 409, 1980.
  28. James H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, 1965.