Academia.eduAcademia.edu

Outline

On the Coherence Between Probability and Possibility Measures 1

2007

Abstract

The purpose of this paper is to study possibility and probability measures in continuous universes, taking different line to the one proposed and dealt with by other authors. We study the coherence between the probability measure and the possibility measure determined by a function that is both a possibility density and distribution function. For this purpose, we first examine functions that satisfy this condition and then we anlyze the coherence in some notable probability distributions cases.

References (12)

  1. G. Birkhoff. Lattice Theory. American Mathematical Society, Providence, 1973.
  2. E. Castiñeira, S. Cubillo and E. Trillas. On Possibility and Probability Measures in finite Boolean algebras. Soft- Computing, 7 (2), 89-96, 2002.
  3. H. Cramer. Métodos matemáticos de estadística. Aguilar, Madrid. (in Spanish), 1970.
  4. M. Delgado and S. Moral. On the concept of Possibility-Probability Consistency. Fuzzy Sets and Systems, 21, 311-318, 1987.
  5. D. Dubois and H. Prade. Théorie des possibilités. Applications à la représentation des connaissances en informatique. Masson, Paris. (in French), 1988.
  6. D. Dubois, H. T. Nguyen and H. Prade, Possibility Theory, Probability and Fuzzy Sets: Misunderstandings, Bridges and Gaps" in Fundamentals of Fuzzy Sets, D.Dubois and H. Prade Eds. Kluwer Academic Publishers, 2000.
  7. D. Dubois, H. Prade and S. Sandri. On possibility/probability transformations. Proceedings of 4th IFSA Conference, (Brussels), 50-53, 1991.
  8. J. A. Drakopoulus. Probabilities, possibilities and fuzzy sets. Fuzzy Sets and Systems, 75, 1-15, 1995.
  9. P. R. Halmos. Measure Theory. Springer-Verlag, New York, 1988.
  10. M. Loève. Probability theory I. Springer-Verlag, New York, 1977.
  11. E. Trillas. Sobre funciones de negación en la teoría de conjuntos difusos". Stochastica, 1 (3), 47-60 (in Spanish), 1979. Reprinted (English version) in Avances in Fuzzy Logic, (eds. S. Barro et altri) Universidad de Santiago de Compostela, 31-43, 1998.
  12. L.A. Zadeh. Fuzzy sets as a basis for a Theory of Possibility. Fuzzy Sets and Systems, 1, 3-28, 1978.