Academia.eduAcademia.edu

Outline

Robotic Process Mining

2022, Process Mining Handbook

https://doi.org/10.1007/978-3-031-08848-3_16

Abstract

User interaction logs allow us to analyze the execution of tasks in a business process at a finer level of granularity than event logs extracted from enterprise systems. The fine-grained nature of user interaction logs open up a number of use cases. For example, by analyzing such logs, we can identify best practices for executing a given task in a process, or we can elicit differences in performance between workers or between teams. Furthermore, user interaction logs allow us to discover repetitive and automatable routines that occur during the execution of one or more tasks in a process. Along this line, this chapter introduces a family of techniques, called Robotic Process Mining (RPM), which allow us to discover repetitive routines that can be automated using robotic process automation technology. The chapter presents a structured landscape of concepts and techniques for RPM, including techniques for user interaction log preprocessing, techniques for discovering frequent routines, notions of routine automatability, as well as techniques for synthesizing executable routine specifications for robotic process automation.

References (42)

  1. Wil M. P. van der Aalst, Martin Bichler, and Armin Heinzl. Robotic process automation. BISE, 60(4), 2018.
  2. Ziawasch Abedjan, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, and Michael Stonebraker. Dataxformer: A robust transformation discovery sys- tem. In 32nd IEEE International Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 1134-1145. IEEE Computer Society, 2016.
  3. Simone Agostinelli. Automated segmentation of user interface logs using trace alignment techniques (extended abstract). In Claudio Di Ciccio, Benoît Depaire, Jochen De Weerdt, Chiara Di Francescomarino, and Jorge Munoz-Gama, edi- tors, Proceedings of the ICPM Doctoral Consortium and Tool Demonstration Track 2020, volume 2703 of CEUR Workshop Proceedings, pages 13-14. CEUR-WS.org, 2020.
  4. Simone Agostinelli, Marco Lupia, Andrea Marrella, and Massimo Mecella. Auto- mated generation of executable RPA scripts from user interface logs. In Business Process Management: Blockchain and Robotic Process Automation Forum -BPM 2020, volume 393 of Lecture Notes in Business Information Processing, pages 116- 131. Springer, 2020.
  5. Simone Agostinelli, Andrea Marrella, and Massimo Mecella. Automated segmen- tation of user interface logs. In Christian Czarnecki and Peter Fettke, editors, Robotic Process Automation. De Gruyter, 2021.
  6. Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin G. Zorn. Flashrelate: extracting relational data from semi-structured spreadsheets using examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation 2015, pages 218-228, 2015.
  7. Dina Bayomie, Ahmed Awad, and Ehab Ezat. Correlating unlabeled events from cyclic business processes execution. In Proceedings of the 28th International Con- ference on Advanced Information Systems Engineering (CAiSE), pages 274-289.
  8. Dina Bayomie, Claudio Di Ciccio, Marcello La Rosa, and Jan Mendling. A proba- bilistic approach to event-case correlation for process mining. In Proceedings of the Int. Conference on Conceptual Modeling (ER2019), Lecture Notes in Computer Science. Springer, 2019.
  9. Antonio Bosco, Adriano Augusto, Marlon Dumas, Marcello La Rosa, and Gian- carlo Fortino. Discovering automatable routines from user interaction logs. In Proceedings of the Business Process Management Forum (BPM Forum). Springer, 2019.
  10. Massimiliano de Leoni, Marlon Dumas, and Luciano García-Bañuelos. Discovering branching conditions from business process execution logs. In Proceedings of FASE. Springer, 2013.
  11. Himel Dev and Zhicheng Liu. Identifying frequent user tasks from application logs. In Proceedings of IUI 2017, pages 263-273. Springer, 2017.
  12. A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. R. McLaughlin, L. Li, and J. L. Herlocker. Tasktracer: a desktop environment to support multi-tasking knowledge workers. In IUI. ACM, 2005.
  13. José Gonzalez Enríquez, Andres Jimenez Ramirez, Francisco José Domínguez Mayo, and J. A. García-García. Robotic process automation: A scientific and industrial systematic mapping study. IEEE Access, 8:39113-39129, 2020.
  14. D. R. Ferreira and D. Gillblad. Discovering process models from unlabelled event logs. In BPM. Springer, 2009.
  15. Fabio Fumarola, Pasqua Fabiana Lanotte, Michelangelo Ceci, and Donato Malerba. Clofast: closed sequential pattern mining using sparse and vertical id-lists. Knowl- edge and Information Systems, 48(2):429-463, 2016.
  16. Junxiong Gao, Sebastiaan J van Zelst, Xixi Lu, and Wil MP van der Aalst. Auto- mated robotic process automation: A self-learning approach. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", pages 95-112. Springer, 2019.
  17. Jerome Geyer-Klingeberg, Janina Nakladal, Fabian Baldauf, and Fabian Veit. Pro- cess mining and robotic process automation: A perfect match. In Proceedings of the Dissertation Award, Demonstration, and Industrial Track at BPM 2018, pages 124-131. CEUR-WS.org, 2018.
  18. Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, pages 317-330, 2011.
  19. Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern min- ing: current status and future directions. Data mining and knowledge discovery, 15(1):55-86, 2007.
  20. Intellipaat. RPA Lifecycle. https://intellipaat.com/blog/tutorial/ rpa-tutorial/rpa-lifecycle/. Accessed on 12 September 2021.
  21. Andres Jimenez-Ramirez, Hajo A Reijers, Irene Barba, and Carmelo Del Valle. A method to improve the early stages of the robotic process automation lifecycle. In International Conference on Advanced Information Systems Engineering, pages 446-461. Springer, 2019.
  22. Z. Jin, M. R. Anderson, M. J. Cafarella, and H. V. Jagadish. Foofah: Transforming data by example. In SIGMOD. ACM, 2017.
  23. Marc Kerremans and Tushar Srivastava. Discover the differences and use cases of process mining versus task mining. Research Note G00723821, Gartner, April 2020.
  24. Mary Lacity and Leslie P. Willcocks. Robotic process automation at telefónica O2. MIS Quarterly Executive, 15(1), 2016.
  25. Sau Dan Lee and Luc De Raedt. An efficient algorithm for mining string databases under constraints. In International Workshop on Knowledge Discovery in Inductive Databases, pages 108-129. Springer, 2004.
  26. V. Leno, M. Dumas, M. La Rosa, F. M. Maggi, and A. Polyvyanyy. Auto- mated discovery of data transformations for robotic process automation. ArXiv, abs/2001.01007, 2020.
  27. Volodymyr Leno, Adriano Augusto, Marlon Dumas, Marcello La Rosa, Fab- rizio Maria Maggi, and Artem Polyvyanyy. Identifying candidate routines for robotic process automation from unsegmented UI logs. In 2nd International Con- ference on Process Mining, ICPM 2020, Padua, Italy, October 4-9, 2020, pages 153-160. IEEE, 2020.
  28. Volodymyr Leno, Adriano Augusto, Marlon Dumas, Marcello La Rosa, Fab- rizio Maria Maggi, and Artem Polyvyanyy. Discovering data transfer routines from user interaction logs. Inf. Syst., 107:101916, 2022.
  29. Volodymyr Leno, Artem Polyvyanyy, Marlon Dumas, Marcello La Rosa, and Fab- rizio Maria Maggi. Robotic process mining: Vision and challenges. Bus. Inf. Syst. Eng., 63(3):301-314, 2021.
  30. Volodymyr Leno, Artem Polyvyanyy, Marcello La Rosa, Marlon Dumas, and Fab- rizio Maria Maggi. Action logger: Enabling process mining for robotic process automation. In Proceedings of the Dissertation Award, Doctoral Consortium, and Demonstration Track at BPM 2019, volume 2420 of CEUR Workshop Proceedings, pages 124-128. CEUR-WS.org, 2019.
  31. Henrik Leopold, Han van der Aa, and Hajo A. Reijers. Identifying candidate tasks for robotic process automation in textual process descriptions. In Proceedings of BPMDS and EMMSAD, pages 67-81. Springer, 2018.
  32. Christian Linn, Phileas Zimmermann, and Dirk Werth. Desktop activity mining -A new level of detail in mining business processes. In Workshops der INFORMATIK 2018 -Architekturen, Prozesse, Sicherheit und Nachhaltigkeit, pages 245-258, 2018.
  33. Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, and Wil M. P. van der Aalst. Data-driven process discovery -revealing conditional infrequent behavior from event logs. In Proceedings of the 29th International Conference on Advanced Information Systems Engineering, pages 545-560. Springer, 2017.
  34. Enno Ohlebusch and Timo Beller. Alphabet-independent algorithms for finding context-sensitive repeats in linear time. Journal of Discrete Algorithms, 34:23-36, 2015.
  35. Andres Jimenez Ramirez, Hajo A. Reijers, Irene Barba, and Carmelo Del Valle. A method to improve the early stages of the robotic process automation lifecycle. In Proceedings of the 31st International Conference on Advanced Information Systems Engineering (CAiSE), pages 446-461. Springer, 2019.
  36. J. Shen, L. Li, and T. G. Dietterich. Real-time detection of task switches of desktop users. In IJCAI, 2007.
  37. Myra Spiliopoulou, Bamshad Mobasher, Bettina Berendt, and Miki Nakagawa. A framework for the evaluation of session reconstruction heuristics in web-usage analysis. Informs journal on computing, 15(2):171-190, 2003.
  38. Rehan Syed, Suriadi Suriadi, Michael Adams, Wasana Bandara, Sander J. J. Lee- mans, Chun Ouyang, Arthur H. M. ter Hofstede, Inge van de Weerd, Moe Thandar Wynn, and Hajo A. Reijers. Robotic process automation: Contemporary themes and challenges. Comput. Ind., 115:103162, 2020.
  39. Niek Tax, Natalia Sidorova, and Wil M. P. van der Aalst. Discovering more precise process models from event logs by filtering out chaotic activities. J. Intell. Inf. Syst., 52(1):107-139, 2019.
  40. C Tornbohm. Gartner market guide for robotic process automation software. Re- port G00319864, Gartner, 2017.
  41. Sebastiaan J. van Zelst, Felix Mannhardt, Massimiliano de Leoni, and Agnes Koschmider. Event abstraction in process mining: literature review and taxon- omy. Granular Computing, 6:719-736, 2021.
  42. Jianyong Wang and Jiawei Han. Bide: Efficient mining of frequent closed sequences. In Proceedings of the 20th international conference on data engineering, pages 79- 90. IEEE, 2004.