Academia.eduAcademia.edu

Outline

Abrupt climate changes and the astronomical theory

2021

https://doi.org/10.5194/CP-2021-103

Abstract

Abrupt climate changes constitute a relatively new field of research, which addresses variations occurring in a relatively short time interval of tens to a hundred years. Such time scales do not correspond to the tens or hundreds of thousands of years that the astronomical theory of climate addresses. The latter theory involves parameters that are external to the climate system and whose multi-periodic variations are reliably known and 15 almost constant for a large extent of Earth history. Abrupt changes, conversely, appear to involve fast processes that are internal to the climate system; these processes varied considerably during the past 2.6 Myr, and yielded more irregular fluctuations. In this paper, we reexamine the main climate variations determined from the U1308 North Atlantic marine record, which yields a detailed calving history of the Northern Hemisphere ice sheets over the past 3.2 Myr. The magnitude and periodicity of the ice-rafted debris (IRD) 20 events observed in the U1308 record allow one to determine the timing of several abrupt climate changes, the larger ones corresponding to the massive iceberg discharges labeled Heinrich events (HEs). In parallel, abrupt warmings, called Dansgaard-Oeschger (DO) events, have been identified in the Greenland records of the last glaciation cycle. Combining the HE and DO observations, we study a complex mechanism that may lead to the observed millennial-scale variability corresponding to the abrupt climate changes of last 0.9 Myr. This 25 mechanism relies on amended Bond cycles, which group DO events and the associated Greenland stadials into a trend of increased cooling, with IRD events embedded into every stadial, the latest of these being an HE. These Bond cycles may have occurred during the last 0.9 Ma when Northern Hemisphere ice sheets reached their maximum extent and volume, thus becoming a major player in this time interval's climate dynamics. Since the waxing and waning of ice sheets during the Quaternary period are orbitally paced, we conclude that the 30 abrupt climate changes observed during the Mid and Upper Pleistocene are therewith indirectly linked to the astronomical theory of climate.

References (159)

  1. https://www.iceandclimate.nbi.ku.dk/data/GICC05modelext_GRIP_and_GISP2_and_resampled_data_s 475 eries_Seierstad_et_al._2014_version_10Dec2014-2.xlsx
  2. • Bond, Gerard C; Heinrich, Hartmut; Broecker, Wallace S; Labeyrie, Laurent D; McManus, Jerry F; Andrews, John T; Huon, Sylvain; Jantschik, Ruediger; Clasen, Silke; Simet, Christine; Tedesco, Kathy;
  3. Klas, Mieczyslawa; Bonani, Georges; Ivy, Susan; Obrochta, Stephen P (2012): (Table S3) Abundance 480 of Neogloboquadrina pachyderma (s) in MIS4-2 of DSDP Site 94-609. PANGAEA, https://doi.org/10.1594/PANGAEA.834692, In supplement to: Obrochta, Stephen P; Miyahara, Hiroko;
  4. Yokoyama, Yusuke; Crowley, Thomas J (2012): A re-examination of evidence for the North Atlantic "1500-year cycle" at Site 609. Quat. Sci. Rev., 55, 23-33, https://doi.org/10.1016/j.quascirev.2012.08.008
  5. 485 https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License. References
  6. Adhémar, J.: "Révolutions de la mer, déluges périodiques", Carilian-Goeury et V. Dalmont, Paris, 1842.
  7. Agassiz, L.: Glaciers, Moraines, and Erratic Blocks, The Edinburgh New Philosophical Journal, 24, 364-383, 490 1838.
  8. Agassiz, L.: Glaciers and the evidence of their having once existed in Scotland, Ireland and England, Proc. Geol. Soc. London, III, Part II, 327-332, 1842.
  9. Allen, J. R. M., Brandt, U., Brauer, A., Hubberten, H. W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J. F. W., Nowaczyk, N. R., Oberhansli, H., Watts, W. A., Wulf, S., and Zolitschka, 495 B.: Rapid environmental changes in southern Europe during the last glacial period, Nature, 400, 740-743, 1999.
  10. Alley, R. B.: Palaeoclimatology -Icing the north Atlantic, Nature, 392, 336-337, https://doi.org/10.1038/32781, 1998.
  11. Alley, R. B., Clark, P. U., Keigwin, L. D., and Webb, R. S.: Making sense of millenial-scale climate change, In: 500 Mechanisms of global climate change at millenial time scales, edited by: Clark, P. U., Webb, R., and Keigwin, L. D., Geophysical Monograph. AGU, 385-394, https://doi.org/10.1029/GM112p0385, 1999.
  12. Alvarez-Solas, J. and Ramstein, G.: On the triggering mechanism of Heinrich events, Proc. Natl. Acad. Sci. U. S. A. 108, E1359-E1360, https://doi.org/10.1073/pnas.1116575108, 2011.
  13. Bagniewski, W., Ghil, M., and Rousseau, D.-D.: Tipping points in the climate system: Automatic detection of 505 abrupt transitions in paleoclimate records, [preprint] American Geophysical Union Fall Meeting 2020, https://doi.org/10.1002/essoar.10506097.1.
  14. Bagniewski, W., Ghil, M., and Rousseau, D. D.: Automatic detection of abrupt transitions in paleoclimate records, Chaos, in review, 2021.
  15. Barbante, C., Barnola, J. M., Becagli, S., Beer, J., Bigler, M., Boutron, C., Blunier, T., Castellano, E., Cattani, 510 O., Chappellaz, J., Dahl-Jensen, D., Debret, M., Delmonte, B., Dick, D., Falourd, S., Faria, S., Federer, U., Fischer, H., Freitag, J., Frenzel, A., Fritzsche, D., Fundel, F., Gabrielli, P., Gaspari, V., Gersonde, R., Graf, W., Grigoriev, D., Hamann, I., Hansson, M., Hoffmann, G., Hutterli, M. A., Huybrechts, P., Isaksson, E., Johnsen, S., Jouzel, J., Kaczmarska, M., Karlin, T., Kaufmann, P., Kipfstuhl, S., Kohno, M., Lambert, F., Lambrecht, A., Lambrecht, A., Landais, A., Lawer, G., Leuenberger, M., Littot, G., Loulergue, L., Luthi, D.,
  16. Maggi, V., Marino, F., Masson-Delmotte, V., Meyer, H., Miller, H., Mulvaney, R., Narcisi, B., Oerlemans, J., Oerter, H., Parrenin, F., Petit, J. R., Raisbeck, G., Raynaud, D., Rothlisberger, R., Ruth, U., Rybak, O., Severi, M., Schmitt, J., Schwander, J., Siegenthaler, U., Siggaard-Andersen, M. L., Spahni, R., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Traversi, R., Udisti, R., Valero-Delgado, F., van den Broeke, M. R., van de Wal, R. S. W., Wagenbach, D., Wegner, A., Weiler, K., Wilhelms, F., Winther, J. G., Wolff, E., 520 and Epica Community Members: One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195-198, https://doi.org/10.1038/nature05301, 2006.
  17. Barker, S., Knorr, G., Edwards, R. L., Parrenin, F., Putnam, A. E., Skinner, L. C., Wolff, E., and Ziegler, M.: 800,000 Years of Abrupt Climate Variability, Science, 334, 347-351, https://doi.org/10.1126/science.1203580, 2011. 525 https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License.
  18. Bassinot, F. C., Labeyrie, L. D., Vincent, E., Quidelleur, X., Shackleton, N. J., and Lancelot, Y.: The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth Planet. Sci. Lett.,126, 91-108, 1994.
  19. Batchelor, C. L., Margold, M., Krapp, M., Murton, D., Dalton, A. S., Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The configuration of Northern Hemisphere ice sheets through the Quaternary, Nature 530 Commu.,10, https://doi.org/10.1038/s41467-019-11601-2, 2019.
  20. Behre, K. E.: Biostratigraphy of the last glacial period in Europe, Quat. Sci. Rev. 8, 25-44, 1989.
  21. Benn, D. I., Le Hir, G., Bao, H. M., Donnadieu, Y., Dumas, C., Fleming, E. J., Hambrey, M. J., McMillan, E. A., Petronis, M. S., Ramstein, G., Stevenson, C. T. E., Wynn, P. M., and Fairchild, I. J.: Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation, Nat. Geosci., 8, 704-707, 535 https://doi.org/10.1038/ngeo2502, 2015.
  22. Berends, C. J., de Boer, B., and van de Wal, R. S. W.: Reconstructing the evolution of ice sheets, sea level, and atmospheric CO2 during the past 3.6 million years, Clim. Past, 17, 361-377, https://doi.org/10.5194/cp- 17-361-2021, 2021.
  23. Berger, A. L.: Support for the astronomical theory of climatic changes, Nature., 269, 44-45, 540 https://doi.org/10.1038/269044a0, 1977.
  24. Berger, A. L.: Long-term variations of caloric insolation resulting from the Earth's orbital elements. Nature, 9, 139-167, 1978.
  25. Blunier, T. and Brook, E. J.: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period, Science, 291, 109-112, https://doi.org/10.1126/science.291.5501.109, 2001.
  26. Boch, R., Cheng, H., Spotl, C., Edwards, R. L., Wang, X., and Hauselmann, P.: NALPS: a precisely dated European climate record 120-60 ka, Clim. Past, 7, 1247-1259, https://doi.org/10.5194/cp-7-1247-2011, 2011.
  27. Boers, N.: Early-warning signals for Dansgaard-Oeschger events in a high-resolution ice core record, Nature Commu., 9, https://doi.org/10.1038/s41467-018-04881-7, 2018.
  28. Boers, N., Ghil, M., and Rousseau, D.-D.: Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard-Oeschger cycles, Proc. Natl. Acad. Sci. U. S. A., 115, E11005-E11014, https://doi.org/10.1073/pnas.1802573115, 2018.
  29. Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., and Ivy, S.: Evidence for massive discharges of icebergs 555 into the North Atlantic Ocean during the last glacial period, Nature, 360, 245-249, 1992.
  30. Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G.: Correlations between climate records from North Atlantic sediments and Greenland ice, Nature, 365, 143-147, 1993.
  31. Bond, G. C. and Lotti, R.: Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation, Science, 267, 1005-1010, 1995.
  32. Broecker, W. S.: Massive iceberg discharges as triggers for global climate change, Nature, 372, 421-424, 1994.
  33. Broecker, W. S., and J. van Donk: Insolation changes, ice volumes, and 0 18 record in deep-sea cores, Rev.
  34. Geophys. Space Phys., 8, 1,169-198, https://doi.org/10.1029/RG008i001p00169, 1970 https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License.
  35. Broecker, W. S. and Denton, G.: The role of ocean-atmosphere reorganizations in glacial cycles, Geochim. 565 Cosmochim. Acta, 53, 2465-2501, 1989.
  36. Broecker, W. S., Andree, M., Bonani, G., Wolfi, W., Oeschger, H., and Klas, M.: Can the Greenland climatic jumps be identified in records from ocean and land? Quat. Res., 30, 1-6, 1988.
  37. Budyko, M. I.: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611-619, 1969.
  38. Buizert, C., Adrian, B., Ahn, J., Albert, M., Alley, R. B., Baggenstos, D., Bauska, T. K., Bay, R. C., Bencivengo, 570 B. B., Bentley, C. R., Brook, E. J., Chellman, N. J., Clow, G. D., Cole-Dai, J., Conway, H., Cravens, E., Cuffey, K. M., Dunbar, N. W., Edwards, J. S., Fegyveresi, J. M., Ferris, D. G., Fitzpatrick, J. J., Fudge, T. J., Gibson, C. J., Gkinis, V., Goetz, J. J., Gregory, S., Hargreaves, G. M., Iverson, N., Johnson, J. A., Jones, T. R., Kalk, M. L., Kippenhan, M. J., Koffman, B. G., Kreutz, K., Kuhl, T. W., Lebar, D. A., Lee, J. E., Marcott, S. A., Markle, B. R., Maselli, O. J., McConnell, J. R., McGwire, K. C., Mitchell, L. E., Mortensen, N. B., Neff, 575 P. D., Nishiizumi, K., Nunn, R. M., Orsi, A. J., Pasteris, D. R., Pedro, J. B., Pettit, E. C., Price, P. B., Priscu, J. C., Rhodes, R. H., Rosen, J. L., Schauer, A. J., Schoenemann, S. W., Sendelbach, P. J., Severinghaus, J. P., Shturmakov, A. J., Sigl, M., Slawny, K. R., Souney, J. M., Sowers, T. A., Spencer, M. K., Steig, E. J., Taylor, K. C., Twickler, M. S., Vaughn, B. H., Voigt, D. E., Waddington, E. D., Welten, K. C., Wendricks, A. W., White, J. W. C., Winstrup, M., Wong, G. J., Woodruff, T. E., and WAIS Divide Project Members: Precise 580 interpolar phasing of abrupt climate change during the last ice age, Nature, 520, 661-U169, https://doi.org/10.1038/nature14401, 2015a.
  39. Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., and Taylor, K. C.: The WAIS Divide deep ice core WD2014 chronology -Part 1: Methane 585 synchronization (68-31 ka BP) and the gas age-ice age difference, Clim. Past, 11, 153-173, https://doi.org/10.5194/cp-11-153-2015, 2015b.
  40. Chappell, J., and Shackleton, N. J.: Oxygen isotopes and sea level, Nature 324, 137-140, 1986.
  41. Chapront, J., Bretagnon, P., and Mehl, M.: Un formulaire pour le calcul des perturbations d'ordres élevés dans les problèmes planétaires. Celest. Mech., 11(3), 379-399, 1975.
  42. Cheng, H., Edwards, R. L., Sinha, A., Spotl, C., Yi, L., Chen, S. T., Kelly, M., Kathayat, G., Wang, X. F., Li, X. L., Kong, X. G., Wang, Y. J., Ning, Y. F., and Zhang, H. W.: The Asian monsoon over the past 640,000 years and ice age terminations, Nature, 534, 640-646, https://doi.org/10.1038/nature18591, 2016.
  43. Clark, P. U. and Pollard, D.: Origin of the middle Pleistocene transition by ice sheet erosion of regolith, Paleoceanography, 13, 1-9, 1998.
  44. Clark, P. U., Alley, R. B., and Pollard, D.: Climatology -Northern Hemisphere ice-sheet influences on global climate change, Science, 286, 1104-1111, https://doi.org/10.1126/science.286.5442.1104, 1999.
  45. Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin, V., Mix, A. C., Pisias, N. G., and Roy, M.: The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO 2 , Quat. Sci. Rev., 25, 3150-3184, https://doi.org/10.1016/j.quascirev.2006.07.008, 2006.
  46. Clark, P. U., Hostetler, S. W., Pisias, N. G., Schmittner, A., and Meissner, K. J.: Mechanisms for an ~7-kyr climate and sea-level oscillation during marine isotope stage 3, in: Ocean circulation: Mechanism and Impacts: Past and Future changes of Meridional Overturning, edited by: Schmittner, A., Chiang, J. C. H., and Hemming, S. R., AGU Monograph 173, 209-246, 2007. https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License.
  47. Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S.
  48. W., and McCabe, A. M.: The Last Glacial Maximum, Science, 325, 710-714, https://doi.org/10.1126/science.1172873, 2009.
  49. Clark, P. U., Shakun, J., Rosenthal, Y., Köhler, P., Schrag, D., Pollard, D., Liu, Z., Bartlein, P., and EGU: Requiem for the Regolith Hypothesis: Sea-Level and Temperature Reconstructions Provide a New Template for the Middle Pleistocene Transition, EGUsphere [preprint], https://doi.org/10.5194/egusphere-egu21- 610 13981, May 2021.
  50. Croll, J.: "Climate and Time, in Their Geological Relations", D. Appletown and Co., New York, 1890.
  51. Crucifix, M.: Oscillators and relaxation phenomena in Pleistocene climate theory, Philosophical Transactions of the Royal Society A, 370, 1140-1165, 2012.
  52. Dansgaard, W., Johnsen, S. J., Moller, J., and Langway, C. C.: One thousand centuries of climatic record from 615 Camp Century on the Greenland ice sheet. Science, 166, 377-381, 1969.
  53. Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahi-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjöprnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218-220., 1993.
  54. Drury, A. J., Liebrand, D., Westerhold, T., Beddow, H. M., Hodell, D. A., Rohlfs, N., Wikens, R. H., Lyle, M., 620 Bell, D. B., Kroon, D., Pälike, H., and Lourens, L. J.: Climate, cryosphere and carbon cycle controls on Southern Atlantic orbital-scale carbonate deposition since the Oligocene (30-0 Ma), Clim. Past [preprint], https://doi.org/10.5194/cp-2020-108, 2020.
  55. Eckmann, J. P., Kamphorst, S. O., and Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. 4, 9, 973-977, https://doi.org/10.1209/0295-5075/4/9/004, 1987.
  56. Efron, B.: Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika, 68 (3), 589-599. 1981.
  57. Efron, B., and Tibshirani, R.,: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci., 1 (1), 54-75, 1986.
  58. Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., and Piotrowski, A. M.: 630 Evolution of Ocean Temperature and Ice Volume Through the Mid-Pleistocene Climate Transition, Science, 337, 704-709, doi:10.1126/science.1221294, 2012.
  59. Emiliani, C.: Pleistocene temperatures, J. Geol., 63, 538-578, 1955.
  60. Fischer, H., Schuepbach, S., Gfeller, G., Bigler, M., Roethlisberger, R., Erhardt, T., Stocker, T. F., Mulvaney, R., and Wolff, E.: Millennial changes in North American wildfire and soil activity over the last glacial cycle, 635 Nat. Geosci., 8, 723-728, https://doi.org/10.1038/ngeo2495, 2015.
  61. Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R. L., Mudelsee, M., Goektuerk, O. M., Fankhauser, A., Pickering, R., Raible, C. C., Matter, A., Kramers, J., and Tuysuz, O.: Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009gl040050, 2009.
  62. Fletcher, W. J., Goni, M. F. S., Allen, J. R. M., Cheddadi, R., Combourieu-Nebout, N., Huntley, B., Lawson, I., Londeix, L., Magri, D., Margari, V., Mueller, U. C., Naughton, F., Novenko, E., Roucoux, K., and Tzedakis, P. C.: Millennial-scale variability during the last glacial in vegetation records from Europe, Quat. Sci. Rev., 29, 2839-2864, https://doi.org/10.1016/j.quascirev.2009.11.015, 2010. https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License. Flint, R. F:,. Glacial and Quaternary Geology, J. Wiley, New York, USA. 1971.
  63. Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153-158, 2001.
  64. Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S.: Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data, Nature, 421, 833-837, 2003.
  65. Ghil, M.: Cryothermodynamics: The chaotic dynamics of paleoclimate, Physica D, 77, 130-159, doi: 10.1016/0167-2789(94)90131-7, 1994.
  66. Ghil, M.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations, in One Hundred Years of Milanković's Theory of Climate Change, Proceedings of the Workshop Honoring the Milutin Milanković Jubilee, edited by Maksimović, S., Milutin Milanković Association, Belgrade, Serbia, in press, 655 2021
  67. Ghil, M. and Childress, S. (Eds): Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Clim. Dyn., Springer-Verlag, New-York, USA, 1987; reissued as an eBook, 2012.
  68. Ghil, M., and Le Treut, H.: A climate model with cryodynamics and geodynamics, J. Geophys. Res., 86, 5262- 5270, 1981.
  69. Ghil, M., and Lucarini, V., The physics of climate variability and climate change, Rev. Mod. Phys., 92, 035002, doi: 10.1103/RevModPhys.92.035002, 2020.
  70. Ghil, M., and Tavantzis, J.: Global Hopf Bifurcation in a simple climate model, SIAM J. Appl. Math., 43, 1019- 1041, doi: 10.1137/0143067, 1983.
  71. Guillevic, M., Bazin, L., Landais, A., Stowasser, C., Masson-Delmotte, V., Blunier, T., Eynaud, F., Falourd, S., 665
  72. Michel, E., Minster, B., Popp, T., Prie, F., and Vinther, M.: Evidence for a three-phase sequence during Heinrich Stadial 4 using a multiproxy approach based on Greenland ice core records, Clim. Past, 10, 2115- 2133, https://doi.org/10.5194/cp-10-2115-2014, 2014.
  73. Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science, 194, 1121-1132, 1976.
  74. Heinrich, H.: Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean during the Past 130,000 years, Quat. Res., 29, 142-152, 1988.
  75. Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys., 42, doi:10.1029/2003RG000128, 2004.
  76. Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M., and Keigwin, L. D.: North Atlantic 675 ocean circulation and abrupt climate change during the last glaciation, Science, 353, 470-474, https://doi.org/10.1126/science.aaf5529, 2016.
  77. Hodell, D. A. and Channell, J. E. T.: Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate, Clim. Past, 12, 1805-1828, https://doi.org/10.5194/cp- 12-1805-2016, 2016.
  78. Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., Benn, D. I., Brocks, J. J., Cohen, P. A., Cox, G. M., Creveling, J. R., Donnadieu, Y., Erwin, D. H., Fairchild, I. J., Ferreira, D., Goodman, J. C., Halverson, G. P., Jansen, M. F., Le Hir, G., Love, G. D., Macdonald, F. A., Maloof, A. C., Partin, C. A., Ramstein, G., Rose, B. E. J., Rose, https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License.
  79. C. V., Sadler, P. M., Tziperman, E., Voigt, A., and Warren, S. G.: Snowball Earth climate dynamics and Cryogenian geology-geobiology, Sci. Adv. ,3, https://doi.org/10.1126/sciadv.1600983, 2017.
  80. 685 Imbrie, J., and Imbrie, K. P.: Ice Ages: Solving the Mystery, 2 nd ed., Harvard Univ. Press, Cambridge, Mass., USA, 1986.
  81. Jakob, K. A., Wilson, P. A., Pross, J., Ezard, T. H. G., Fiebig, J., Repschlager, J., and Friedrich, O.: A new sea- level record for the Neogene/Quaternary boundary reveals transition to a more stable East Antarctic Ice Sheet, Proc. Natl. Acad. Sci. U. S. A., 117, 30980-30987, https://doi.org/10.1073/pnas.2004209117, 2020.
  82. 690 Johnsen, S. J., Dansgaard, W., Clausen, H. B., and Langway, C. C.: Oxygen isotope profiles through the Antartic and Greenland ice sheets. Nature, 235, 429-434, 1972.
  83. Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen, H. B., Miller, H., Masson- Delmotte, V., Sveinbjörnsdottir, A. E., and White, J.: Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP, J. Quat.
  84. 695 Sci., 16, 299-307, 2001.
  85. Källén, E., C. Crafoord and M. Ghil,: Free oscillations in a climate model with ice-sheet dynamics, J. Atmos. Sci., 36, 2292-2303, doi: 10.1175/1520-0469(1979)036<2292:FOIACM>2.0.CO;2., 1979.
  86. Kent, D. V., Olsen, P. E., and Muttoni, G.: Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages, Earth- 700 Sci. Rev., 166, 153-180, https://doi.org/10.1016/j.earscirev.2016.12.014, 2017.
  87. Kent, D. V., Olsen, P. E., Rasmussen, C., Lepre, C., Mundil, R., Irmis, R. B., Gehrels, G. E., Giesler, D., Geissman, J. W., and Parker, W. G.: Empirical evidence for stability of the 405-kiloyear Jupiter-Venus eccentricity cycle over hundreds of millions of years, Proc. Natl. Acad. Sci. U. S. A., 115, 6153-6158, https://doi.org/10.1073/pnas.1800891115, 2018.
  88. Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., and Leuenberger, M.: Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core, Clim. Past, 10, 887-902, https://doi.org/10.5194/cp-10-887-2014, 2014.
  89. Knudsen, M. F., Norgaard, J., Grischott, R., Kober, F., Egholm, D. L., Hansen, T. M., and Jansen, J. D.: New cosmogenic nuclide burial-dating model indicates onset of major glaciations in the Alps during Middle 710 Pleistocene Transition, Earth Planet. Sci. Lett., 549, https://doi.org/10.1016/j.epsl.2020.116491, 2020.
  90. Kukla, G., McManus, J. F., Rousseau, D.-D., and Chuine, I.: How long and how stable was the last interglacial? Quat. Sci. Rev., 16, 605-612, 1997.
  91. Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: a new orbital solution for the long-term motion of the Earth, Astron. Astrophys., 532, https://doi.org/10.1051/0004-6361/201116836, 2011.
  92. 715 Le Treut, H., and Ghil, M.: Orbital forcing, climatic interactions, and glaciation cycles, J. Geophys. Res., 88C, 5167-5190, 1983.
  93. Le Treut, H., Portes, J., Jouzel, J., and Ghil, M.: Isotopic modeling of climatic oscillations: implications for a comparative study of marine and ice-core records, J. Geophys. Res., 93, 9365-9383, 1988.
  94. Le Verrier, U.-J.: Théorie et Tables du Mouvement Apparent du Soleil, Annales de l'Observatoire Impérial de 720 Paris (in French). Vol. 4, 1858. https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License.
  95. Liebrand, D., Lourens, L. J., Hodell, D. A., de Boer, B., van de Wal, R. S. W., and Paelike, H.: Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene, Clim. Past, 7, 869-880, https://doi.org/10.5194/cp-7-869-2011, 2011.
  96. Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic delta O-18 725 records, Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071, 2005.
  97. Lohmann, G., Butzin, M., Eissner, N., Shi, X., and Stepanek, C.: Abrupt Climate and Weather Changes Across Time Scales, Paleoceanogr. Paleoclimatology, 35, https://doi.org/10.1029/2019PA003782, 2020.
  98. Lohmann, J. and Ditlevsen, P. D.: Random and externally controlled occurrences of Dansgaard-Oeschger events, Clim. Past, 14, 609-617, https://doi.org/10.5194/cp-14-609-2018, 2018.
  99. Lohmann, J. and Ditlevsen, P. D.: Objective extraction and analysis of statistical features of Dansgaard- Oeschger events, Clim. Past, 15, 1771-1792, https://doi.org/10.5194/cp-15-1771-2019, 2019.
  100. MacAyeal, D. R.: Binge/Purge oscillations of the Laurentide ice-sheet as a cause of the North-Atlantics Heinrich events, Paleoceanography, 8, 775-784, https://doi.org/10.1029/93pa02200, 1993.
  101. Marcott, S. A., Clark, P. U., Padman, L., Klinkhammer, G. P., Springer, S. R., Liu, Z. Y., Otto-Bliesner, B. L., 735
  102. Carlson, A. E., Ungerer, A., Padman, J., He, F., Cheng, J., and Schmittner, A.: Ice-shelf collapse from subsurface warming as a trigger for Heinrich events, Proc. Natl. Acad. Sci. U. S. A., 108, 13415-13419, https://doi.org/10.1073/pnas.1104772108, 2011.
  103. Marwan, N., Carmen Romano, M., Thiel, M., and Kurths, J.: Recurrence plots for the analysis of complex systems, Phys. Rep.-Rev. Sec. Phys. Lett., 438, 237-329, https://doi.org/10.1016/j.physrep.2006.11.001, 740 2007.
  104. Marwan, N., Schinkel, S., and Kurths, J.: Recurrence plots 25 years later -Gaining confidence in dynamical transitions, EPL, 101, https://doi.org/10.1209/0295-5075/101/20007, 2013.
  105. McManus, J. F., Bond, G. C., Broecker, W. S., Johnsen, S., Labeyrie, L., and Higgins, S.: High-resolution climate records from the North Atlantic during the last interglacial. Nature, 371, 326-329, 1994.
  106. 745 McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., and Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834-837, https://doi.org/10.1038/nature02494, 2004.
  107. McManus, J. F., Oppo, D. W., and Cullen, J. L.: A 0,5-million-year record of millennial-scale climate variability in the North Atlantic, Science, 283, 971-975, 1999.
  108. Menviel, L., Timmermann, A., Friedrich, T., and England, M. H.: Hindcasting the continuum of Dansgaard- Oeschger variability: mechanisms, patterns and timing, Clim. Past, 10, 63-77, https://doi.org/10.5194/cp-10- 63-2014, 2014.
  109. Menviel, L., Skinner, L. C., Tarasov, L., and Tzedakis, P. C.: An ice-climate oscillatory framework for Dansgaard-Oeschger cycles, Nat. Rev. Earth Env., 1, 677-693, https://doi.org/10.1038/s43017-020-00106- 755 y, 2021.
  110. Meyers, S. R. and Malinverno, A.: Proterozoic Milankovitch cycles and the history of the solar system, Proc. Natl. Acad. Sci. U. S. A., 115, 6363-6368, https://doi.org/10.1073/pnas.1717689115, 2018.
  111. Milankovitch, M.: Théorie mathématique des phénomènes thermiques produits par la radiation solaire, Académie Yougoslave des Sciences et des Arts de Zagreb (Ed.), Gauthier Villars, Paris, 1920.
  112. 760 https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License.
  113. Milankovitch, M.: Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem, Royal Serbian Academy of Sciences, Belgrade, 1941
  114. Miller, G. H., and de Vernal, A.: Will greenhouse warming lead to Northern Hemisphere ice-sheet growth? Nature, 355 (6357), 244-246, 1992.
  115. Miller, K. G., Mountain, G. S., Wright, J. D., and Browning, J. V.: A 180-Million-Year Record of Sea Level and 765 Ice Volume Variations from Continental Margin and Deep-Sea Isotopic Records, Oceanography, 24, 40-53, https://doi.org/10.5670/oceanog.2011.26, 2011.
  116. Müller, U. C., Pross, J., and Bibus, E.: Vegetation response to rapid climate change in Central Europe during the past 140,000 yr based on evidence from the Füramoos pollen record, Quat. Res., 59, 235-245, 2003.
  117. Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., and Sciunnach, D.: Onset of 770 major Pleistocene glaciations in the Alps, Geology, 31, 989-992, https://doi.org/10.1130/g19445.1, 2003.
  118. Naafs, B. D. A., Hefter, J., and Stein, R.: Millennial-scale ice rafting events and Hudson Strait Heinrich(-like) Events during the late Pliocene and Pleistocene: a review, Quat. Sci. Rev., 80, 1-28, https://doi.org/10.1016/j.quascirev.2013.08.014, 2013.
  119. Obrochta, S. P., Crowley, T. J., Channell, J. E. T., Hodell, D. A., Baker, P. A., Seki, A., and Yokoyama, Y.: 775 Climate variability and ice-sheet dynamics during the last three glaciations, Earth Planet. Sci. Lett., 406, 198-212, https://doi.org/10.1016/j.epsl.2014.09.004, 2014.
  120. Olsen, P. E., Laskar, J., Kent, D. V., Kinney, S. T., Reynolds, D. J., Sha, J. G., and Whiteside, J. H.: Mapping Solar System chaos with the Geological Orrery, Proc. Natl. Acad. Sci. U. S. A., 116, 10664-10673, https://doi.org/10.1073/pnas.1813901116, 2019.
  121. Penck, A. and Brückner, E.: Die Alpen im Eiszeitalter, 3 vols., C. H. Tauchnitz, Leipzig, Germany, 1909.
  122. Pilgrim, L.: Versuch einer rechnerischen Behandlung der Eiszeit, Jahreshefte des Vereins für Vateri. Naturkunde in Würtemberg, Bd 60, 1904.
  123. Pisias, N. G. and Moore, T. C.: The evolution of Pleistocene climate: A time-series approach, Earth Planet. Sci. Lett., 52, 450-458, https://doi.org/10.1016/0012-821x(81)90197-7, 1981.
  124. Rahmstorf, S.: Ocean circulation and climate during the past 120,000 years, Nature, 419, 207-214, 2002.
  125. Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl- Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A stratigraphic framework for abrupt climatic changes during the Last 790 Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy, Quat. Sci. Rev., 106, 14-28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
  126. Riechers, K., Mitsui, T., Boers, N. and Ghil, M. Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations, Clim. Past, submitted, 2021.
  127. Rousseau, D.-D., Antoine, P., Hatté, C., Lang, A., Zöller, L., Fontugne, M., Ben Othman, D., Luck, J. M., Moine, O., Labonne, M., Bentaleb, I., and Jolly, D.: Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation, Quat. Sci. Rev., 21, 1577-1582, 2002.
  128. Rousseau, D.-D., Kukla, G., and McManus, J.: What is what in the ice and the ocean? Quat. Sci. Rev., 25, 2025-2030, 2006. https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License.
  129. Rousseau, D.-D., Boers, N., Sima, A., Svensson, A., Bigler, M., Lagroix, F., Taylor, S., and Antoine, P.: (MIS3 & 2) millennial oscillations in Greenland dust and Eurasian aeolian records -A paleosol perspective, Quat. Sci. Rev., 169, 99-113, https://doi.org/10.1016/j.quascirev.2017.05.020, 2017a
  130. Rousseau, D.-D., Svensson, A., Bigler, M., Sima, A., Steffensen, J. P., and Boers, N.: Eurasian contribution to the last glacial dust cycle: how are loess sequences built? Clim. Past, 13, https://doi.org/10.5194/cp-13- 805 1181-2017, 2017b.
  131. Rousseau, D.-D., Antoine, P., and Sun, Y.: How dusty was the last glacial maximum over Europe? Quat. Sci. Rev., 254, 6775-6775, 2021.
  132. Ruddiman, W. F.: Late Quaternary deposition of ice) rafted sand in subpolar North-Atlantic (Lat 40-degrees to 65-degrees-N), Geol. Soc. Am. Bull., 88, 1813-1827, https://doi.org/10.1130/0016- 810 7606(1977)88<1813:lqdois>2.0.co;2, 1977.
  133. Ruddiman, W. F., Raymo, M., Martinson, D. G., Clement, B. M., and Backman, J.: Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 4, 353-412, 1989.
  134. Saltzman B.: Dynamical Paleoclimatology. Academic Press, San Diego, USA, 2002.
  135. Sanchez-Goni, M. F., Turon, J. L., Eynaud, F., and Gendreau, S.: European climatic response to millennial- 815 scale changes in the atmosphere-ocean system during the last glacial period, Quat. Res., 54, 394-403, 2000.
  136. Sanchez-Goni, M. F., Cacho, I., Turon, J. L., Guiot, J., Sierro, F. J., Peypouquet, J. P., Grimalt, J. O., and Shackleton, N. J.: Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region, Clim. Dyn., 19, 95-105, 820 https://doi.org/10.1007/s00382-001-0212-x, 2002.
  137. Sarnthein, M., Stattegger, K., Dreger, D., Erlenkeuser, H., Grootes, P., Haupt, B. J., Jung, S., Kiefer, T., Kuhnt, W., Pflaumann, U., Schäfer-Neth, C., Schulz, H., Schulz, M., Seidov, D., Simstich, J., van Kreveld, S., Vogelsang, E., Völker, A., and Weinelt, M.: Fundamental Modes and Abrupt Changes in North Atlantic Circulation and Climate over the last 60 ky -Concepts, Reconstruction and Numerical Modeling, in "The 825 Northern North Atlantic", edited by: Schäfer P., Ritzrau W., Schlüter M., and Thiede J. Springer, 365-410, https://doi.org/10.1007/978-3-642-56876-3_21, 2001.
  138. Schulz, M.: On the 1470-year pacing of Dansgaard-Oeschger warm events, Paleoceanography, 17, 4.1-4.10, 2002.
  139. Schupbach, S., Fischer, H., Bigler, M., Erhardt, T., Gfeller, G., Leuenberger, D., Mini, O., Mulvaney, R., Abram, 830 N. J., Fleet, L., Frey, M. M., Thomas, E., Svensson, A., Dahl-Jensen, D., Kettner, E., Kjaer, H., Seierstad, I., Steffensen, J. P., Rasmussen, S. O., Vallelonga, P., Winstrup, M., Wegner, A., Twarloh, B., Wolff, K., Schmidt, K., Goto-Azuma, K., Kuramoto, T., Hirabayashi, M., Uetake, J., Zheng, J., Bourgeois, J., Fisher, D., Zhiheng, D., Xiao, C., Legrand, M., Spolaor, A., Gabrieli, J., Barbante, C., Kang, J. H., Hur, S. D., Hong, S. B., Hwang, H. J., Hong, S., Hansson, M., Iizuka, Y., Oyabu, I., Muscheler, R., Adolphi, F., Maselli, O.,
  140. McConnell, J., and Wolff, E. W.: Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene, Nat. Commun., 9, https://doi.org/10.1038/s41467-018-03924-3, 2018.
  141. Scotese, C. R., Song, H., Mills, B. J. W., and van der Meer, D. G.: Phanerozoic paleotemperatures: The Earth's changing climate during the last 540 million years, Earth-Sci.
  142. Rev., 215, https://doi.org/10.1016/j.earscirev.2021.103503, 2021. https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License.
  143. Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost, R. D.: Alkenone and boron-based Pliocene pCO 2 records, Earth Planet. Sci. Lett., 292, 201-211, https://doi.org/10.1016/j.epsl.2010.01.037, 2010.
  144. Sellers, W. D.: A global climatic model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol., 8, 392-400, 1969.
  145. Shackleton, N. J.: The 100,000-year Ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, 1897-1902, 2000.
  146. Shackleton, N. J. and Opdyke, N. D.: Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere glaciation. Nature, 270, 216-223, 1977.
  147. Stocker, T. F. and Johnsen, S. J.: A minimum thermodynamic model for the bipolar seesaw, 850 Paleoceanography, 18, 11-1-11-9, 2003.
  148. Svensson, A., Dahl-Jensen, D., Steffensen, J. P., Blunier, T., Rasmussen, S. O., Vinther, B. M., Vallelonga, P., Capron, E., Gkinis, V., Cook, E., Kjaer, H. A., Muscheler, R., Kipfstuhl, S., Wilhelms, F., Stocker, T. F., Fischer, H., Adolphi, F., Erhardt, T., Sigl, M., Landais, A., Parrenin, F., Buizert, C., McConnell, J. R., Severi, M., Mulvaney, R., and Bigler, M.: Bipolar volcanic synchronization of abrupt climate change in Greenland 855 and Antarctic ice cores during the last glacial period, Clim. Past, 16, 1565-1580, https://doi.org/10.5194/cp- 16-1565-2020, 2020.
  149. Turner, S. K.: Pliocene switch in orbital-scale carbon cycle/climate dynamics, Paleoceanography, 29, 1256- 1266, https://doi.org/10.1002/2014pa002651, 2014.
  150. Tziperman, E. and Gildor, H.: On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry 860 between glaciation and deglaciation times, Paleoceanography, 18(1), 1001, doi:10.1029/2001PA000627, 2003.
  151. Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperatures changes derived from benthic foraminifera isotopic records, Quat. Sci. Rev., 21, 295-305, 2002.
  152. van de Wal, R. S. W., de Boer, B., Lourens, L. J., Koehler, P., and Bintanja, R.: Reconstruction of a continuous high-resolution CO2 record over the past 20 million years, Clim. Past, 7, 1459-1469, https://doi.org/10.5194/cp-7-1459-2011, 2011.
  153. Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., and Dorale, J. A.: A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China, Science, 294, 2345-2348, 870 https://doi.org/10.1126/science.1064618, 2001.
  154. Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Palike, H., Rohl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million 875 years, Science, 369, 1383-1387, https://doi.org/10.1126/science.aba6853, 2020.
  155. Woillard, G.: Grande Pile Peat Bog : A Continuous Pollen Record for the Last 140,000 Years, Quat. Res. 9, 1-21, 1978. https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License. https://doi.org/10.1016/j.quascirev.2009.10.013, 2010.
  156. Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686-693, 2001.
  157. Zagwijn, W. H.: Vegetation and climate during warmer intervals in the Late Pleistocene of western and central Europe, Quat. Int., 3/4, 57-67, 1989.
  158. 885 Zhang, S., Wang, X., Hammarlund, E. U., Wang, H., Costa, M. M., Bjerrum, C. J., Connelly, J. N., Zhang, B., Bian, L., and Canfield, D. E.: Orbital forcing of climate 1.4 billion years ago, Proc. Natl. Acad. Sci. U. S. A., 112, E1406-E1413, https://doi.org/10.1073/pnas.1502239112, 2015.
  159. Ziemen, F. A., Kapsch, M.-L., Klockmann, M., and Mikolajewicz, U.: Heinrich events show two-stage climate response in transient glacial simulations, Clim. Past, 15, 153-168, https://doi.org/10.5194/cp-15-153-2019, 890 2019. https://doi.org/10.5194/cp-2021-103 Preprint. Discussion started: 11 August 2021 c Author(s) 2021. CC BY 4.0 License.