Academia.eduAcademia.edu

Outline

‘Beyond Li-ion technology’—a status review

2024, Nanotechnology

https://doi.org/10.1088/1361-6528/AD690B

Abstract

Li-ion battery is currently considered to be the most proven technology for energy storage systems when it comes to the overall combination of energy, power, cyclability and cost. However, there are continuous expectations for cost reduction in large-scale applications, especially in electric vehicles and grids, alongside growing concerns over safety, availability of natural resources for lithium, and environmental remediation. Therefore, industry and academia have consequently shifted their focus towards ‘beyond Li-ion technologies’. In this respect, other non-Li-based alkali-ion/polyvalent-ion batteries, non-Li-based all solid-state batteries, fluoride-ion/ammonium-ion batteries, redox-flow batteries, sand batteries and hydrogen fuel cells etc. are becoming potential cost effective alternatives. While there has been notable swift advancement across various materials, chemistries, architectures, and applications in this field, a comprehensive overview encompassing high-energy ‘beyond Li-ion’ technologies, along with considerations of commercial viability, is currently lacking. Therefore, in this review article, a rationalized approach is adopted to identify notable ‘post-Li’ candidates. Their pros and cons are comprehensively presented by discussing the fundamental principles in terms of material characteristics, relevant chemistries, and architectural developments that make a good high-energy ‘beyond Li’ storage system. Furthermore, a concise summary outlining the primary challenges of each system is provided, alongside the potential strategies being implemented to mitigate these issues. Additionally, the extent to which these strategies have positively influenced the performance of these ‘post-Li’ technologies is discussed.

Key takeaways
sparkles

AI

  1. Li-ion batteries dominate energy storage, but 'beyond Li-ion technologies' are emerging due to safety and resource concerns.
  2. Na-ion and K-ion batteries show promise due to lower costs and higher availability compared to Li-ion.
  3. The global market for Na-ion batteries is projected to reach $4.8 billion by 2032, growing at 19.3% CAGR.
  4. Redox flow batteries (RFBs) excel in scalability and safety, expected to grow to $1.79 billion by 2029.
  5. Hydrogen fuel cells (HFCs) could significantly reduce carbon footprints, anticipated to reach $39.86 billion by 2032.

References (534)

  1. Vishnumurthy K A and Girish K H 2021 A comprehensive review of battery technology for E-mobility J. Indian Chem. Soc. 98 100173
  2. Matuszak J 2022 The importance of batteries in renewable energy transition Knowhow-Energy & Power RND STEM & Education, Sustainability (available at: https:// knowhow.distrelec.com/energy-and-power/the- importance-of-batteries-in-renewable-energy-transition/)
  3. Shields L 2023 Greenhouse gas emissions reduction targets and market-based policies National Conference of State Legislatures (available at: www.ncsl.org/energy/ greenhouse-gas-emissions-reduction-targets-and-market- based-policies)
  4. Shin H 2023 South Korea cuts 2030 emissions reductions targets for industry (Reuters) (available at: www.reuters. com/business/sustainable-business/south-korea-cuts-2030- emissions-reductions-targets-industry-2023-03-21/)
  5. Lui S 2022 Guest post: why China is set to significantly overachieve its 2030 climate goals CarbonBrief-Clear on Climate (available at: www.carbonbrief.org/guest-post- why-china-is-set-to-significantly-overachieve-its-2030- climate-goals/#:∼:text=China's%20international%20 climate%20pledge%20(its,in%202030%20 from%202005%20levels)
  6. Singh S C 2023 India succeeds in reducing emissions rate by 33% over 14 years-sources (Reuters) (available at: www. reuters.com/world/india/india-succeeds-reducing- emissions-rate-by-33-over-14-years-sources-2023-08-09/ #:∼:text=The%20report's%20findings%20showed%20
  7. India,the%202005%20level%20by%202030)
  8. Andwari A M et al 2017 A review of battery electric vehicle technology and readiness levels Renew. Sustain. Energy Rev. 78 5414-30
  9. Mehar D et al 2023 A review on battery technologies and its challenges in electrical vehicle IEEE Int. Students' Conf. on Electrical, Electronics and Computer Science (SCEECS) (India) pp 1-6
  10. Yamaki J 2009 Secondary batteries-lithium rechargeable systems-lithium-ion Encyclopedia of Electrochemical Power Sources pp 183-91
  11. Breeze P 2019 Power System Energy Storage Technologies Power Generation Technologies 3rd edn ch 10, pp 219-49
  12. Huang P H, Kuo J-K and Huang C-Y 2016 A new application of the UltraBattery to hybrid fuel cell vehicles Int. J. Energy Res. 40 146-59
  13. Salkuti S R et al 2021 Electrochemical batteries for smart grid applications Int. J. Electr. Comput. Eng. 11 1849-56
  14. Petrovic S 2021 Nickel-cadmium batteries Battery Technology Crash Course (Springer) pp 73-88
  15. Goodenough J B and Park K S 2013 The Li-ion battery: a perspective J. Am. Chem. Soc. 135 1167-76
  16. Gupta A and Shukla V 2023 Lithium-ion battery market size by chemistry (LFP, LCO, LTO, NMC, NCA, LMO), by component (Cathode, Anode, Separators, Electrolytes, Aluminum Foil, Copper Foil, Others), by application (Industrial, Automotive, Consumer Electronics, Energy Storage), 2023-2032 Global Market Insights-Insights to Innovation Report ID: GMI1135 (available at: www. gminsights.com/industry-analysis/lithium-ion-battery- market#:∼:text=Lithium%2DIon%20Battery%20 Market%20size%20exceeded%20USD%2052.5%20 billion%20in,(Li%2Dion)%20batteries)
  17. Battery Technology Market 2022 Emergen research Report ID: ER_001095 (available at: www.emergenresearch.com/ industry-report/battery-technology-market)
  18. Tarascon J M and Armand M 2001 Issues and challenges facing rechargeable lithium batteries nature Nature 414 359-67
  19. Ding Y, Cano Z P, Yu A, Lu J and Chen Z 2019 Automotive Li-ion batteries: current status and future perspectives Electrochem. Energy Rev. 2 1-28
  20. 2023 Global lithium-ion battery market outlook (available at: www.expertmarketresearch.com/reports/lithium-ion- battery-market)
  21. Sardar I H and Bhattacharya S 2020 A short review of lithium-ion battery technology Int. J. Sci. Res. Sci. Eng. Technol. 7 500-7
  22. Daya A and Sathiyan S P 2022 Review on Li-ion based battery chemistry: challenges and opportunities IOP Conf. Ser.: Mater. Sci. Eng. 1258 012041
  23. Kim H J et al 2020 A comprehensive review of Li-ion battery materials and their recycling techniques Electronics 9 1161
  24. Elmahallawy M, Elfouly T, Alouani A and Massoud A M 2022 A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction IEEE Access 10 119040-70
  25. Chen T, Jin Y, Lv H, Yang A, Liu M, Chen B, Xie Y and Chen Q 2020 Applications of lithium-ion batteries in grid-scale energy storage systems Trans. Tianjin Univ. 26 208-17
  26. Zhang R, Xia B, Li B, Cao L, Lai Y, Zheng W, Wang H and Wang W 2018 State of the art of lithium-ion battery SOC estimation for electrical vehicles Energies 11 1820
  27. Lithium-Ion Battery Types Electronicsnotes (available at: www.electronics-notes.com/articles/electronic_ components/battery-technology/li-ion-lithium-ion-types.
  28. Which chemistry is most suitable for the electrification of your vehicle? Let's discover the different types of batteries Flash Battery (available at: www.flashbattery.tech/en/ types-of-lithium-batteries-which-chemistry-use/)
  29. Lithium-Ion Battery Market 2022 Fortune business insights Report ID: FBI100123 (available at: www. fortunebusinessinsights.com/industry-reports/lithium-ion- battery-market-100123)
  30. Tolemeo R, De Feo G, Adami R and Sesti Osséo L 2020 Application of life cycle assessment to lithium-ion batteries in the automotive sector Sustainability 12 4628
  31. Ardeshiri R R et al 2020 Machine learning approaches in battery management systems: state of the art: remaining useful life and fault detection 2nd IEEE Int. Conf. on Industrial Electronics for Sustainable Energy Systems (IESES) (Cagliari, Italy) pp 61-66
  32. Wu X et al 2019 Safety issues in lithium-ion batteries: materials and cell design Front. Energy Res. 7 65
  33. Chen Y et al 2021 A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards J. Energy Chem. 59 83-99
  34. Irfan U 2014 How lithium-ion batteries grounded the dreamliner Scientific American (available at: www. scientificamerican.com/article/how-lithium-ion-batteries- grounded-the-dreamliner/)
  35. Dorsz A and Lewandowski M 2022 Analysis of fire hazards associated with the operation of electric vehicles in enclosed structures Energies 15 11
  36. Gavryliuk A, Yakovchuk R, Chalyy D, Lemishko M and Tur N 2023 Determination of fire protection distances during a tesla model s fire in a closed parking lot East.-Europ. J. Enterp. Technol. 2 39-46
  37. Barai A et al 2018 Looking deeper into the Galaxy (Note 7) Batteries 4 3
  38. Tian Y et al 2021 Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization Chem. Rev. 121 1623-69
  39. Cano Z P, Banham D, Ye S, Hintennach A, Lu J, Fowler M and Chen Z 2018 Batteries and fuel cells for emerging electric vehicle markets Nat. Energy 3 279-89
  40. Crabtree G 2019 The coming electric vehicle transformation: a future electric transportation market will depend on battery innovation Science 366 422-4
  41. Ziegler M S, Song J and Trancik J E 2021 Determinants of lithium-ion battery technology cost decline Energy Environ. Sci. 14 6074-98
  42. David L W, Li J and Daniel C 2015 Prospects for reducing the processing cost of lithium-ion batteries J. Power Sources 275 234-42
  43. Keen K 2020 As battery costs plummet, lithium-ion innovation hits limits, experts say S&P Global Market Intelligence (available at: www.spglobal.com/ marketintelligence/en/news-insights/latest-newsheadlines/ as-battery-costs-plummet-lithium-ioninnovation-hits- limits-experts-say-58613238)
  44. Rangarajan S S, Sunddararaj S P, Sudhakar A, Shiva C K, Subramaniam U, Collins E R and Senjyu T 2022 Lithium-ion batteries-the crux of electric vehicles with opportunities and challenges Clean Technol. 4 908-30
  45. Fawthrop A 2020 Top six countries with the largest lithium reserves in the world NS Energy (available at: www. nsenergybusiness.com/features/six-largest-lithium- reserves-world/)
  46. Hendrix C S 2023 India's lithium discovery could boost green energy but creates problems in the region Peterson Institute for International Economics (available at: www. piie.com/blogs/realtime-economics/indias-lithium- discovery-could-boost-green-energy-creates-problems- region#:∼:text=The%20Geological%20Survey%20 of%20India,territory%20of%20Jammu%20and%20
  47. Murray J 2020 China 'dominating' the lithium-ion battery supply chain, says industry report NS Energy (available at: www.nsenergybusiness.com/features/china-lithium-ion- battery/)
  48. Zhang M Y 2023 The highly charged geopolitics of lithium EastAsiaForum (available at: www.eastasiaforum.org/ 2023/03/01/the-highly-charged-geopolitics-of-lithium/)
  49. Olivetti E A, Ceder G, Gaustad G G and Fu X 2017 Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical Met. Joule 1 229-43
  50. Verma R, Foss M M, Gülen G, Tsai C, Quijano D and Elliott B 2016 Battery Materials Value Chains: Demand, Capacity and Challenges (University of Texas Bureau of Economic Geology, Center for Energy Economics)
  51. Crownhart C 2023 What's next for batteries MIT Technology Review (available at: www.technologyreview.com/2023/ 01/04/1066141/whats-next-for-batteries/)
  52. Henze V 2022 Lithium-ion battery pack prices rise for first time to an average of $151/kWh BloombergNEF (Accessed 6 December 2022) (available at: https://about. bnef.com/blog/lithium-ion-battery-pack-prices-rise-for- first-time-to-an-average-of-151-kwh/)
  53. Statista 2023 Lithium-ion battery price worldwide from 2013 to 2023 Statista Research Department (available at: www. statista.com/statistics/883118/global-lithium-ion-battery- packcosts/#:∼:text=Lithium%2Dion%20battery%20 pack%20price,efficient%20energy%20storage%20 devices%20worldwide)
  54. Deng D 2015 Li-ion batteries: basics, progress, and challenges Energy Sci. Eng. 3 385-418
  55. Harper G D J et al 2023 Roadmap for a sustainable circular economy in lithium-ion and future battery technologies J. Phys. Energy 5 021501
  56. Min X, Xiao J, Fang M, Wang W, Zhao Y, Liu Y, Abdelkader A M, Xi K, Kumar R V and Huang Z 2021 Potassium-ion batteries: outlook on present and future technologies Energy Environ. Sci. 14 2186
  57. Siddiqi S and Holland A 2023 Sodium-ion batteries 2023-2033: technology, Players, markets, and forecasts IDTechEx (available at: www.idtechex.com/en/research- report/sodium-ion-batteries-2023-2033-technology- players-markets-and-forecasts/933)
  58. Chipade S 2023 Sodium-ion vs. lithium-ion battery: which is a better alternative? GEP (available at: www.gep.com/ blog/strategy/lithium-ion-vs-sodium-ion-battery) (Accessed 2 February 2023)
  59. Statista 2024 Average lithium carbonate price from 2010 to 2023 Statista Research Department (available at: www. statista.com/statistics/606350/battery-grade-lithium- carbonate-price/)
  60. Crownhart C 2023 How sodium could change the game for batteries MIT Technology Review (available at: www. technologyreview.com/2023/05/11/1072865/how-sodium- could-change-the-game-for-batteries/)
  61. Gokhale Y 2023 Sodium-ion batteries, current status of the technology and supply chain EVreporter (available at: https://evreporter.com/sodium-ion-batteries-current-status- of-the-technology-and-supply-chain/#:∼:text= Energy%20densities%20in%20sodium%2Dion, (Lithium%20Iron%20Phosphate)%20batteries)
  62. Zarrabeitia M, Carretero-González J, Leskes M, Adenusi H, Iliev B, Schubert T J S, Passerini S and Castillo-Martinez E 2023 Could potassium-ion batteries become a competitive technology? Energy Mater. 3 300046
  63. Wu X, Qiu S, Liu Y, Xu Y, Jian Z, Yang J, Ji X and Liu J 2022 The quest for stable potassium-ion battery chemistry Adv. Mater. 34 2106876
  64. Anoopkumar V, John B and Td M 2020 Potassium-ion batteries: key to future large-scale energy storage? ACS Appl. Energy Mater. 3 9478-92
  65. Zhang W, Yin J, Wang W, Bayhan Z and Alshareef H N 2021 Status of rechargeable potassium batteries Nano Energy 83 105792
  66. Sodium-ion battery market 2023 Precedence Research Report code 2338 (available at: www.precedenceresearch. com/sodium-ion-batteries-market)
  67. Potassium-Ion Battery Market 2022 Transparency market research Report ID TMRGL85244 (available at: www. transparencymarketresearch.com/potassium-ion-battery- market.html)
  68. Nayak P K, Yang L, Brehm W and Adelhelm P 2018 From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises Angew. Chem. 57 102-20
  69. Abraham K M 2020 How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 5 3544-7
  70. Usiskin R, Lu Y, Popovic J, Law M, Balaya P, Hu Y-S and Maier J 2021 Fundamentals, status and promise of sodium-based batteries Nat. Rev. Mater. 6 1020-35
  71. Gupta P, Pushpakanth S, Haider M A and Basu S 2022 Understanding the design of cathode materials for Na-ion batteries ACS Omega 7 5605-14
  72. Yadav P, Shelke V, Patrike A and Shelke M 2023 Sodium-based batteries: development, commercialization journey and new emerging chemistries Oxf. Open Mater. Sci. 3 itac019
  73. Xu Y et al 2023 2023 roadmap for potassium-ion batteries J. Phys. Energy 5 021502
  74. Dhir S, Wheeler S, Capone I and Pasta M 2020 Outlook on K-ion batteries Chemistry 6 2442-60
  75. Zhang H, Gao Y, Liu X, Zhou L, Li J, Xiao Y, Peng J, Wang J and Chou S-L 2023 Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems Adv. Energy Mater. 13 2300149
  76. Vahid Mohammadi A, Rosen J and Gogotsi Y 2021 The world of two-dimensional carbides and nitrides (MXenes) Science 372 eabf1581
  77. Kim Y, Ha K H, Oh S M and Lee K T 2014 High-capacity anode materials for sodium-ion batteries Chem. Eur. J. 28 11980-92
  78. Yabuuchi N, Kubota K, Dahbi M and Komaba S 2014 Research development on sodium-ion batteries Chem. Rev. 114 11636-82
  79. Hwang J Y, Oh S-M, Myung S-T, Chung K Y, Belharouak I and Sun Y-K 2015 Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries Nat. Commun. 6 6865
  80. Liang X, Yu T-Y, Ryu H-H and Sun Y-K 2022 Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries Energy Storage Mater. 47 515-25
  81. Boddu V R R, Palanisamy M, Sinha L, Yadav S C, Pol V G and Shirage P M 2021 Hysteresis abated P2-type NaCoO 2 cathode reveals highly reversible multiple phase transitions for high-rate sodium-ion batteries Sustain. Energy Fuels 5 3219-28
  82. Jayachitra J, Richards Joshua J, Balamurugan A, Sivakumar N, Sharmila V, Shanavas S, Abu Haija M, Waqas Alam M and BaQais A 2023 High electrode performance of hydrothermally developed activated C coated O 3 -NaFeO 2 electrode for Na-ion batteries applications Ceram. Int. 49 48-56
  83. Zhao S, Shi Q, Feng W, Liu Y, Yang X, Zou X, Lu X and Zhao Y 2023 Research progresses in O3-type Ni/Fe/Mn based layered cathode materials for sodium ion batteries Carbon Neutrality 2 13
  84. Han M H, Gonzalo E, Casas-Cabanas M and Rojo T 2014 Structural evolution and electrochemistry of monoclinic NaNiO 2 upon the first cycling process J. Power Sources 258 266-71
  85. Gao X, Liu H, Deng W, Tian Y, Zou G, Hou H and Ji X 2021 Iron-based layered cathodes for sodium-ion batteries Batter. Supercaps 4 1657-79
  86. Kim H, Seo D-H, Urban A, Lee J, Kwon D-H, Bo S-H, Shi T, Papp J K, McCloskey B D and Ceder G 2018 Stoichiometric layered potassium transition metal oxide for rechargeable potassium batteries Chem. Mater. 30 6532-9
  87. Liao J, Han Y, Zhang Z, Xu J, Li J and Zhou X 2021 Recent progress and prospects of layered cathode materials for potassium-ion batteries Energy Environ. Mater. 4 178-200
  88. Hwang J Y, Myung S-T and Sun Y-K 2018 Recent progress in rechargeable potassium batteries Adv. Funct. Mater. 28 1802938
  89. Hwang J-Y, Kim J, Yu T-Y, Myung S-T and Sun Y-K 2018 Development of P3-K 0.69 CrO 2 as an ultra-high-performance cathode material for K-ion batteries Energy Environ. Sci. 11 2821-7
  90. Zhang Z, Hu Q, Liao J, Xu Y, Duan L, Tian R, Du Y, Shen J and Zhou X 2023 Uniform P2-K 0.6 CoO 2 microcubes as a high-energy cathode material for potassium-ion batteries Nano Lett. 23 694-700
  91. Kubota K, Kumakura S, Yoda Y, Kuroki K and Komaba S 2018 Electrochemistry and solid-state chemistry of NaMeO 2 (Me = 3d transition metals) Adv. Energy Mater. 8 1703415
  92. Wu D et al 2015 NaTiO 2 : a layered anode material for sodium-ion batteries Energy Environ. Sci. 8 195-202
  93. Valma C, Giffin G A, Buchholz D and Passerini S 2016 Non-aqueous K-ion battery based on layered K 0.3 MnO 2 and hard carbon/carbon black J. Electrochem. Soc. 163 163A1295
  94. Hamani D, Ati M, Tarascon J-M and Rozier P 2011 NaxVO 2 as possible electrode for Na-ion batteries Electrochem. Commun. 13 938-41
  95. Amaha K, Kobayashi W, Akama S, Mitsuishi K and Moritomo Y 2017 Interrelation between inhomogeneity and cyclability in O3-NaFe 1/2 Co 1/2 O 2 Phys. Status Solidi RRL 11 1600284
  96. Wang P F, You Y, Yin Y-X and Guo Y-G 2016 An O3-type NaNi 0.5 Mn 0.5 O 2 cathode for sodium-ion batteries with improved rate performance and cycling stability J. Mater. Chem. A 4 17660-4
  97. Vassilaras P, Toumar A J and Ceder G 2014 Electrochemical properties of NaNi 1/3 Co 1/3 Fe 1/3 O 2 as a cathode material for Na-ion batteries Electrochem. Commun. 38 79-81
  98. Sun Y et al 2021 Degradation mechanism of O3-Type NaNi 1/3 Fe 1/3 Mn 1/3 O 2 cathode materials during ambient storage and their in-situ regeneration ACS Appl. Mater. Interfaces 4 2061-7
  99. Masese T et al 2018 Rechargeable potassium-ion batteries with honeycomb-layered tellurates as high voltage cathodes and fast potassium-ion conductors Nat. Commun. 9 3823
  100. Zhou P, Liu X, Weng J, Wang L, Wu X, Miao Z, Zhao J, Zhou J and Zhuo S 2019 Synthesis, structure, and electrochemical properties of O ′ 3-type monoclinic NaNi 0.8 Co 0.15 Al 0.05 O 2 cathode materials for sodium-ion batteries J. Mater. Chem. A 7 657-63
  101. Mu L, Xu S, Li Y, Hu Y-S, Li H, Chen L and Huang X 2015 Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode Adv. Mater. 27 6928-33
  102. Liu C, Luo S, Huang H, Wang Z, Hao A, Zhai Y and Wang Z 2017 K 0.67 Ni 0.17 Co 0.17 Mn 0.66 O 2 : a cathode material for potassium-ion battery Electrochem. Commun. 82 150-4
  103. Yabuuchi N, Yano M, Yoshida H, Kuze S and Komaba S 2013 Synthesis and electrode performance of O3-type NaFeO 2 -NaNi 1/2 Mn 1/2 O 2 Solid solution for rechargeable sodium batteries J. Eletrochem. Soc. 160 A3131-A3137
  104. Li J et al 2022 Study on the mechanism of the influence of doping on the properties of cathode materials of sodium ion batteries Prog. Chem. 34 857-69
  105. Singh B, Wang Z, Park S, Gautam G S, Chotard J-N, Croguennec L, Carlier D, Cheetham A K, Masquelier C and Pieremanuele C 2021 A chemical map of NaSICON electrode materials for sodium-ion batteries J. Mater. Chem. A 9 281-92
  106. Shen X, Han M, Li X, Zhang P, Yang C, Liu H, Hu Y-S and Zhao J 2022 Regulated synthesis of α-NaVOPO 4 with an enhanced conductive network as a high-performance cathode for aqueous Na-ion batteries ACS Appl. Mater. Interfaces 14 6841-51
  107. Han J, Li G-N, Liu F, Wang M, Zhang Y, Hu L, Dai C and Xu M 2017 Investigation of K 3 V 2 (PO 4 ) 3 /C nanocomposite as high-potential cathode materials for potassium-ion batteries Chem. Comm. 53 1805-8
  108. Venkatachalam P, Ganesan S, Rengapillai S and Marimuthu S 2021 Gradual development of maricite NaMnPO 4 with the Influence of diol chain length on the polyol process of surpassed sodium intercalation Ind. Eng. Chem. Res. 60 5861-8
  109. Chihara K, Katogi A, Kubota K and Komaba S 2017 KVPO 4 F and KVOPO 4 toward 4 volt-class potassium-ion batteries Chem. Comm. 53 5208-11
  110. Wang J, Ouyang B, Kim H, Tian Y, Ceder G and Kim H 2021 Computational and experimental search for potential polyanionic K-ion cathode materials J. Mater. Chem. A 9 18564
  111. Tereshchenko I V, Aksyonov D A, Zhugayevych A, Antipov E V and Abakumov A M 2020 Reversible electrochemical potassium deintercalation from > 4 V positive electrode material K 6 (VO) 2 (V 2 O 3 ) 2 (PO 4 ) 4 (P 2 O 7 ) Solid State Ion. 357 115468
  112. Park H, Kim H, Ko W, Jo J H, Lee Y, Kang J, Park I, Myung S-T and Kim J 2020 Development of K 4 Fe 3 (PO 4 ) 2 (P 2 O 7 ) as a novel Fe-based cathode with high energy densities and excellent cyclability in rechargeable potassium batteries Energy Storage Mater. 28 47-54
  113. Nam Y C, Lee S-J and Son J-T 2020 Synthesis by electrospinning and electrochemical properties of Na 2 Fe 2 (SO 4 ) 3 nanofibers as a cathode material for sodium-ion batteries J. Korean Phys. Soc. 77 836-9
  114. Chen M et al 2018 A novel graphene oxide wrapped Na 2 Fe 2 (SO 4 ) 3 /C cathode composite for long life and high energy density sodium-ion batteries Adv. Energy Mater. 8 1800944
  115. Dong J, Xiao J, Yu Y, Wang J, Chen F, Wang S, Zhang L, Ren N, Pan B and Chen C 2022 Electronic structure regulation of Na 2 FePO 4 F cathode toward superior high-rate and high-temperature sodium-ion batteries Energy Storage Mater. 45 851-60
  116. Wang F, Liu S, Jiang Q, Feng K, Yang X, Li X, Zhang H, Xia M and Zhang H 2020 K 2 Fe 3 (SO 4 ) 3 (OH) 2 (H 2 O) 2 : a new high-performance hydroxysulfate cathode material for alkali metal ion batteries J. Power Sources 452 227835
  117. Ren J, Zhu H, Fang Y, Li W, Lan S, Wei S, Yin Z, Tang Y, Ren Y and Liu Q 2023 Typical cathode materials for lithium-ion and sodium-ion batteries: from structural design to performance optimization Carbon Neutralization 2 339-77
  118. Xiao J, Hua W and Chen M 2021 Superior sodium storage of Na 3 V(PO 3 ) 3 N nanofibers as a high voltage cathode for flexible sodium-ion battery devices Nanotechnology 32 435404
  119. Fedotov S S, Luchinin N D, Aksyonov D A, Morozov A V, Ryazantsev S V, Gaboardi M, Plaisier J R, Stevenson K J, Abakumov A M and Antipov E V 2020 Titanium-based potassium-ion battery positive electrode with extraordinarily high redox potential Nat. Commun. 11 1484
  120. Song T, Yao W, Kiadkhunthod P, Zheng Y, Wu N, Zhou X, Tunmee S, Sattayaporn S and Tang Y 2020 A low-cost and environmentally friendly mixed polyanionic cathode for sodium-ion storage Angew. Chem. 132 750
  121. Pramanik A, Bradford A J, Lee S L, Lightfoot P and Armstrong A R 2021 Na 2 Fe(C 2 O 4 )(HPO 4 ): a promising new oxalatephosphate based mixed polyanionic cathode for Li/Na ion batteries J. Phys. Mater. 4 024004
  122. Tang L, Zhang J, Li Z, Liu X, Xu Q, Liu H, Wang Y, Xia Y and Ma Z 2020 Using Na 7 V 4 (P 2 O 7 ) 4 (PO 4 ) with superior Na storage performance as bipolar electrodes to build a novel high-energy-density symmetric sodium-ion full battery J. Power Sources 451 451227734
  123. Xie B et al 2020 Cathode properties of Na 3 FePO 4 CO 3 prepared by the mechanical ball milling method for Na-ion batteries Sci. Rep. 10 3278
  124. Shiprath K, Manjunatha H, Babu Naidu K C, Khan A, Asiri A M and Boddula R 2020 Na 3 MnPO 4 CO 3 as cathode for aqueous sodium ion batteries: synthesis and electrochemical characterization Mater. Chem. Phys. 248 122952
  125. Hosaka T et al 2018 Polyanionic compounds for potassium-ion batteries Chem. Rec. 18 1-12
  126. Li S F, Hou X-K, Gu Z-Y, Meng Y-F, Zhao C-D, Zhang H-X and Wu X-L 2021 Sponge-like NaFe 2 PO 4 (SO 4 ) 2 @rGO as a high-performance cathode material for sodium-ion batteries New J. Chem. 45 4854
  127. Gao J, Zhao P and Feng K 2017 Na 2.67 Mn 1.67 (MoO 4 ) 3 : a 3.45 V alluaudite-type cathode candidate for sodium-ion batteries Chem. Mater. 29 940-4
  128. Liu Z, Wang J and Lu B 2020 Plum pudding model inspired KVPO 4 F@3DC as high-voltage and hyperstable cathode for potassium ion batteries Sci. Bull. 65 1242-51
  129. Ma X et al 2022 Preparation of K 2 Fe[Fe(CN) 6 ] nanoparticles by improved electrostatic spray assisted precipitation technology as potassium-ion battery cathodes J. Alloys Compd. 904 904164049
  130. Wang L et al 2015 Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries J. Am. Chem. Soc. 137 2548-54
  131. He G and Nazar L F 2017 Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries ACS Energy Lett. 2 1122-11127
  132. Chong S, Yang J, Sun L, Guo S, Liu Y and Liu H K 2020 Potassium nickel iron hexacyanoferrate as ultra-long-life cathode material for potassium-ion batteries with high energy density ACS Nano 14 9807-18
  133. Xie B, Zuo P, Wang L, Wang J, Huo H, He M, Shu J, Li H, Lou S and Yin G 2019 Achieving long-life prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture Nano Energy 61 201-10
  134. Heo W J, Chae S M, Hyoung J and Hong T-S 2019 Rhombohedral potassium-zinc hexacyanoferrate as a cathode material for non-aqueous potassium-ion batteries Inorg. Chem. 58 3065-72
  135. Tang X, Liu H, Su D, Notten P H L and Wang G 2018 Hierarchical sodium-rich prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries Nano Res. 11 3979
  136. Wang Q, Li J, Jin H, Xin S and Gao H 2022 Prussian-blue materials: revealing new opportunities for rechargeable batteries InfoMat 4 e12311
  137. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y and Komaba S 2012 P2-type Nax[Fe 1/2 Mn 1/2 ]O 2 made from earth-abundant elements for rechargeable Na batteries Nat. Commun. 11 512-7
  138. Tripathi A, Xi S, Gajjela S R and Balaya P 2020 Introducing Na-sufficient P3-Na 0.9 Fe 0.5 Mn 0.5 O 2 as a cathode material for Na-ion batteries Chem. Commun. 56 10686-9
  139. Oz E, Altin S and Avci S 2023 Investigation of physical and electrochemical properties of Ni-doped Tunnel/P2 hybrid Na 0.44 MnO 2 cathode material for sodium-ion batteries J. Solid State Chem. 318 123741
  140. Rakhymbay L, Bakenov Z and Konarov A 2021 A study of Ni-Doping effects in Na 2 Mn 3-X NixO 7 layered cathode for sodium-ion battery ECS Meet Abstr. MA2021-02 1829
  141. Kalyoncuoglu B, Ozgul M, Altundag S, Harfouche M, Oz E, Avci S, Ji X, Altin S and Ates M N 2024 Unveiling the outstanding full-cell performance of P2-type Na 0.67 (Mn 0.44 Ni 0.06 Fe 0.43 Ti 0. 0 7 )O 2 cathode active material for Na-ion batteries J. Power Sources 591 591233775
  142. Oz E, Altin S and Avci S 2023 Tunnel/layer composite Na 0.44 MnO 2 cathode material with enhanced structural stability via cobalt doping for sodium-ion batteries ACS Omega 8 27170-8
  143. Hoa N T T, Van Ky N, Trung Son L, Tien Dung D, Van Nguyen T, Dinh Lam V and Van Nghia N 2023 Facile synthesis of cobalt-doped sodium lithium manganese oxide with superior rate capability and excellent cycling performance for sodium-ion battery J. Electroanal. Chem. 929 117129
  144. Clement R J, Billaud J, Robert Armstrong A, Singh G, Rojo T, Bruce P G and Grey C P 2016 Structurally stable Mg-doped P2-Na 2/3 Mn 1-y MgyO 2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies Energy Environ. Sci. 9 3240-51
  145. Qin W, Liu Y, Liu J, Yang Z and Liu Q 2022 Boosting the ionic transport and structural stability of Zn-doped O3-type NaNi 1/3 Mn 1/3 Fe 1/3 O 2 cathode material for half/full sodium-ion batteries Electrochim. Acta 418 418140357
  146. Hong N et al 2020 Improved high rate performance and cycle performance of Al-doped O3-type NaNi 0.5 Mn 0.5 O 2 cathode materials for sodium-ion batteries J. Phys. Chem. C 124 4222925-22933
  147. Liu C L, Luo S-H, Huang H-B, Liu X, Zhai Y-C and Wang Z-W 2019 Fe-doped layered P3-type K 0.45 Mn 1-x FexO 2 (x⩽0.5) as cathode materials for low-cost potassium-ion batteries Chem. Eng. J. 378 122167
  148. Bai P, Jiang K, Zhang X, Xu J, Guo S and Zhou H 2020 Ni-doped layered manganese oxide as a stable cathode for potassium-ion batteries ACS Appl. Mater. Interfaces 12 10490-5
  149. Huang R et al 2022 Layered K 0.54 Mn 0.78 Mg 0.22 O 2 as a high-performance cathode material for potassium-ion batteries Nano Res 15 3143-9
  150. Zheng Y et al 2023 Zinc-doping strategy on P2-type Mn-based layered oxide cathode for high-performance potassium-ion batteries Small 19 2302160
  151. Dang R, Li N, Yang Y, Wu K, Li Q, Lee Y L, Liu X, Hu Z and Xiao X 2020 Designing advanced P3-type K 0.45 Ni 0.1 Co 0.1 Mn 0.8 O 2 and improving electrochemical performance via Al/Mg doping as a new cathode Material for potassium-ion batteries J. Power Sources 464 464228190
  152. Brahmanandan S, Nair S and Santhanagopalan D 2023 High-performance Zr-doped P3-Type Na 0.67 Ni 0.33 Mn 0.67 O 2 cathode for Na-ion battery applications Crystals 13 1339
  153. Tao S, Zhou W, Wu D, Wang Z, Qian B, Chu W, Marcelli A and Song L 2021 Insights into the Ti 4+ doping in P2-type Na 0.67 Ni 0.33 Mn 0.52 Ti 0.15 O 2 for enhanced performance of sodium-ion batteries J. Mater. Sci. Technol. 74 230-6
  154. Shi Q et al 2022 Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries Nat. Commun. 13 3205
  155. Wang Y, Kim S, Lu J, Feng G and Li X 2020 A study of Cu doping effects in P2-Na 0.75 Mn 0.6 Fe 0.2 (CuxNi 0.2-x )O 2 layered cathodes for sodium-ion batteries Batter. Supercaps 3 1-13
  156. Guoqiang K et al 2023 Sb doped O3 type Na 0.
  157. 9 Ni 0.5 Mn 0.3 Ti 0.2 O 2 cathode material for Na-ion battery J. Inorg. Mater. 38 656-62
  158. Guo Y J et al 2021 Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes Nat. Commun. 12 5267
  159. Wang Y, Wang X, Li X, Yu R, Chen M, Tang K and Zhang X 2019 The novel P3-type layered Na 0.65 Mn 0.75 Ni 0.25 O 2 oxides doped by non-metallic elements for high performance sodium-ion batteries Chem. Eng. J. 360 139-47
  160. Zhao Y et al 2021 Progress of the elements doped NaFeO 2 cathode materials for high performance sodium-ion batteries ChemistrySelect 6 9701-8
  161. Wei F, Zhang Q, Zhang P, Tian W, Dai K, Zhang L, Mao J and Shao G 2021 Review-research progress on layered transition metal oxide cathode materials for sodium ion batteries J. Electrochem. Soc. 168 050524
  162. Li N, Ren J, Dang R B, Wu K, Lee Y L, Hu Z B and Xiao X L 2019 Suppressing phase transition and improving electrochemical performances of O3-NaNi 1/3 Mn 1/3 Fe 1/3 O 2 through ionic conductive Na 2 SiO 3 coating J. Power Sources 429 42938-45
  163. Deng Q, Zheng F H, Zhong W T, Pan Q Z, Liu Y Z, Li Y P, Li Y J, Hu J H, Yang C H and Liu M L 2021 Nanoscale surface modification of P2-type Na 0.65 [Mn 0.70 Ni 0.16 Co 0.14 ]O 2 cathode material for high-performance sodium-ion batteries Chem. Eng. J. 404 126446
  164. Yu Y, Kong W J, Li Q Y, Ning D, Schuck G, Schumacher G, Su C J and Liu X F 2020 Understanding the multiple effects of TiO 2 coating on NaMn 0.33 Fe 0.33 Ni 0.33 O 2 cathode material for Na-Ion batteries ACS Appl. Energy Mater. 3 933-42
  165. Yu Y, Ning D, Li Q Y, Franz A, Zheng L R, Zhang N, Ren G X, Schumacher G and Liu X 2021 Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries Energy Storage Mater. 38 130-40
  166. Sun H H, Hwang J Y, Yoon C S, Heller A and Mullins C B 2018 Capacity degradation mechanism and cycling stability enhancement of AlF 3-coated nanorod gradient Na[Ni 0.65 Co 0.08 Mn 0.27 ]O 2 cathode for sodium-ion batteries ACS Nano 12 12912-22
  167. Lamb J and Manthiram A 2021 Surface-modified Na(Ni 0.3 Fe 0.4 Mn 0.3 )O 2 cathodes with enhanced cycle life and air stability for sodium-ion batteries ACS Appl. Energy Mater. 4 11735-42
  168. Hwang J Y, Myung S T, Choi J U, Yoon C S, Yashiro H and Sun Y K 2017 Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries J. Mater. Chem. A 5 23671-80
  169. Kalluri S, Seng K H, Pang W K, Guo Z, Chen Z, Liu H K and Dou S X 2014 Electrospun P2-type Na 2/3 (Fe 1/2 Mn 1/2 )O 2 hierarchical nanofibers as cathode material for sodium-ion batteries ACS Appl. Mater. Interfaces 6 8953-8
  170. Saroha R, Khan T S, Chandra M, Shukla R, Panwar A K, Gupta A, Haider M A, Basu S and Dhaka R S 2019 Electrochemical properties of Na 0.66 V 4 O 10 nanostructures as cathode material in rechargeable batteries for energy storage applications ACS Omega 4 9878-88
  171. Liang X and Sun Y K 2022 A novel pentanary metal oxide cathode with P2/O3 biphasic structure for high-performance sodium-ion batteries Adv. Funct. Mater. 32 322206154
  172. Mao Q, Gao R, Li Q, Ning D, Zhou D, Schuck G, Schumacher G, Hao Y and Liu X 2020 O3-type NaNi 0.5 Mn 0.5 O 2 hollow microbars with exposed {010} facets as high performance cathode materials for sodium-ion batteries Chem. Eng. J. 382 122978
  173. Keller M et al 2016 Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P-and O-type phases Adv. Energy Mater. 6 1501555
  174. Deng T, Fan X, Chen J, Chen L, Luo C, Zhou X, Yang J, Zheng S and Wang C 2018 Layered P2-type K 0.65 Fe 0.5 Mn 0.5 O 2 microspheres as superior cathode for highenergy potassium-ion batteries Adv. Funct. Mater. 28 1800219
  175. Wang X, Xu X, Niu C, Meng J, Huang M, Liu X, Liu Z and Mai L 2017 Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries Nano Lett. 17 544-50
  176. Zhang W et al 2019 Approaching high-performance potassium-ion batteries via advanced design strategies and engineering Sci. Adv. 5 eaav7412
  177. Yuan T et al 2022 A high-rate, durable cathode for sodium-ion batteries: Sb-doped O3-type Ni/Mn-based layered oxides ACS Nano 16 18058-70
  178. Liu C L, Luo S-H, Huang H-B, Zhai Y-C and Wang Z-W 2019 Layered potassium-deficient P2-and P3-type cathode materials KxMnO 2 for K-ion batteries Chem. Eng. J. 356 53-59
  179. Pei Q, Lu M, Liu X, Li D, Rao X, Liu Z and Zhong S 2021 The effects of Al-doped to cathode material based on hollow microspheres of nickel-manganese on sodium-ion batteries Nanotechnology 32 395602
  180. Sayahpour B, Hirsh H, Parab S, Nguyen L H B, Zhang M and Meng Y S 2022 Perspective: design of cathode materials for sustainable sodium-ion batteries MRS Energy Sustain. 9 183-97
  181. Li L, Hu Z, Liu Q, Wang J-Z, Guo Z and Liu H-K 2021 Cathode materials for high-performance potassium-ion batteries Cell Rep. Phys. Sci. 2 100657
  182. Nathan M G T, Yu H, Kim G-T, Kim J-H, Cho J S, Kim J and Kim J-K 2022 Recent advances in layered metal-oxide cathodes for application in potassium-ion batteries Adv. Sci. 9 2105882
  183. Guo S, Liu P, Yu H, Zhu Y, Chen M, Ishida M and Zhou H 2015 A layered P2-and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries Angew. Chem. 54 5894-9
  184. Hou P, Yin J, Lu X, Li J, Zhao Y and Xu X 2018 A stable layered P3/P2 and spinel intergrowth nanocomposite as a long-life and high-rate cathode for sodium-ion batteries Nanoscale 10 6671-7
  185. Yan Z et al 2019 A hydrostable cathode material based on the layered P2@P3 composite with revealed redox behavior of Cu for high-rate and long cycling sodium-ion batteries Angew. Chem., Int. Ed. 58 1412-6
  186. Linnell S F et al 2022 Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na 4/7 [□1/7 Ti 1/7 Mn 5/7] O2 in sodium-ion batteries J. Mater. Chem. A 10 9941-53
  187. Boivin E, House R A and Marie J J 2022 Controlling iron versus oxygen redox in the layered cathode Na 0.67 Fe 0.5 Mn 0.5 O 2 : mitigating voltage and capacity fade by Mg substitution Adv. Energy Mater. 12 122200702
  188. Mortemard de Boisse B et al 2016 Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode Nat. Commun. 7 11397
  189. Barpanda P, Nishimura S-I and Yamada A 2012 High-voltage pyrophosphate cathodes Adv. Energy Mater. 2 841-59
  190. Kang J, Baek S, Mathew V, Gim J, Song J, Park H, Chae E, Rai A K and Kim J 2012 High rate performance of a Na 3 V 2 (PO 4 ) 3 /C cathode prepared by pyro-synthesis for sodium-ion batteries J. Mater. Chem. 22 20857-60
  191. Zhang K Y, Gu Z-Y, Ang E H, Guo J-Z, Wang X-T, Wang Y and Wu X-L 2022 Advanced polyanionic electrode materials for potassium-ion batteries: progresses, challenges and application prospects Mater. Today 54 189-201
  192. Boddula R and Asiri M A (eds) 2020 Potassium-ion Batteries Materials and Applications (Scrivener Publishing, & John Wiley & Sons, Inc.)
  193. Xu C, Zhao J, Yang C and Hu Y-S 2023 Polyanionic cathode materials for practical Na-ion batteries toward high energy density and long cycle life ACS Cent. Sci.
  194. 9 1721-36
  195. Song J, Wang L, Lu Y, Liu J, Guo B, Xiao P, Lee -J-J, Yang X-Q, Henkelman G and Goodenough J B 2015 Removal of interstitial H 2 O in hexacyanometallates for a superior cathode of a sodium-ion battery J. Am. Chem. Soc. 137 2658-64
  196. Wu F, Zhao C, Chen S, Lu Y, Hou Y, Hu Y-S, Maier J and Yu Y 2018 Multi-electron reaction materials for sodium-based batteries Mater. Today 21 960-73
  197. Zhang Y and Gao Z 2019 High performance anode material for sodium-ion batteries derived from covalent-organic frameworks Electrochim. Acta 301 23-28
  198. Er J L, Naguib M, Gogotsi Y and Shenoy V B 2014 Ti 3 C 2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries ACS Appl. Mater. Interfaces 6 11173-9
  199. Janek J and Zeier W G 2023 Challenges in speeding up solid-state battery development Nat. Energy 8 230-40
  200. Sun Y-K 2020 Promising all-solid-state batteries for future electric vehicles ACS Energy Lett. 5 3221-3
  201. Li C, Wang Z-Y, He Z-J, Li Y-J, Mao J, Dai K-H, Yan C and Zheng J-C 2021 An advance review of solid-state battery: challenges, progress and prospects Sustain. Mater. Technol. 29 e00297
  202. Inoshi A, Omuta T, Kobayashi E, Kitajou A and Okada S 2017 A single-phase, all-solid-state sodium battery using Na 3-x V 2-x Zrx(PO 4 ) 3 as the cathode, anode, and electrolyte Adv. Mater. Interfaces 4 1600942
  203. Yao Q and Zhu C 2020 Advanced post-potassium-ion batteries as emerging potassium-based alternatives for energy storage Adv. Funct. Mater. 30 2005209
  204. Han F, Gao T, Zhu Y, Gaskell K J and Wang C 2015 A battery made from a single material Adv. Mater. 27 3473-83
  205. Yang H L, Zhang B-W, Konstantinov K, Wang Y-X, Liu H-K and Dou S-X 2021 Progress and challenges for all-solid-state sodium batteries Adv. Energy Sustain. Res. 2 2000057
  206. Chi X et al 2022 An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries Nat. Commun. 13 2854
  207. Lu Y, Li L, Zhang Q, Cai Y, Ni Y and Chen J 2022 High-performance all-solid-state electrolyte for sodium batteries enabled by the interaction between the anion in salt and Na 3 SbS 4. Chem. Sci. 13 3416
  208. Sivakumaran A, Samson A J and Thangadurai V 2023 Progress in sodium silicates for all-solid-state sodium batteries-a review Energy Technol. 11 2201323
  209. Hasegawa G and Hayashi K 2023 NASICON-based all-solid-state Na-ion batteries: a perspective on manufacturing via tape-casting process APL Energy 1 020902
  210. Masese T 2019 The materials making potassium-ion batteries possible Res. Outreach 107 30-33
  211. Hamada M, Tatara R, Kubota K, Kumakura S and Komaba S 2022 All-solid-state potassium polymer batteries enabled by the effective pretreatment of potassium metal ACS Energy Lett. 7 2244-6
  212. Yuan H, Li H, Zhang T, Li G, He T, Du F and Feng S 2018 A K 2 Fe 4 O 7 superionic conductor for all-solid-state potassium metal batteries J. Mater. Chem. A 6 8413-8
  213. Fei H, Liu Y, An Y, Xu X, Zhang J, Xi B, Xiong S and Feng J 2019 Safe all-solid-state potassium batteries with three dimensional, flexible and binder-free metal sulfide array electrode J. Power Sources 433 226697
  214. Kang S, Jeon B, Hong S-T and Lee H 2022 A sulfone-based crystalline organic electrolyte for 5 V solid-state potassium batteries Chem. Eng. J. 443 443136403
  215. Khudyshkina A D, Morozova P A, Butzelaar A J, Hoffmann M, Wilhelm M, Theato P, Fedotov S S and Jeschull F 2022 Poly(ethylene oxide)-based electrolytes for solid-state potassium metal batteries with a prussian blue positive electrode ACS Appl. Polym. Mater. 4 2734-46
  216. Moseley P T et al 2015 High-temperature sodium batteries for energy storage Electrochemical Energy Storage for Renewable Sources and Grid Balancing ch 15, pp 253-68
  217. Tewari S 2015 Potential of sodium-sulfur battery Energy Storage to Enable Further Integration of Wind Energy Storage for Smart Grids Planning and Operation for Renewable and Variable Energy Resources (Vers) ch 3, pp 67-95
  218. Chen P, Wang C and Wang T 2022 Review and prospects for room-temperature sodium-sulfur batteries Mater. Res. Lett. 10 691-719
  219. Zhao X, Lu Y, Qian Z, Wang R and Guo Z 2020 Potassium-sulfur batteries: status and perspectives EcoMat 2 e12039
  220. Lei Y J, Yang H-L, Liang Y, Liu H-W, Zhang B, Wang L, Lai W-H, Wang Y-X, Liu H-K and Dou S-X 2022 Progress and prospects of emerging potassium-sulfur batteries Adv. Energy Mater. 12 2202523
  221. Huang X L, Zhou C, He W, Sun S, Chueh Y-L, Wang Z M, Liu H K and Dou S X 2021 An emerging energy storage system: advanced Na-Se batteries ACS Nano 15 5876-903
  222. Ma J, Gao L, Li S, Zeng Z, Zhang L and Xie J 2020 Dual play of chitin-derived N-doped carbon nanosheets enabling high-performance Na-SeS 2 half/full cells Batter. Supercaps 3 165-73
  223. Deng Y, Gong L, Ahmed H, Pan Y, Cheng X, Zhu S and Zhang H 2020 N-doped interconnected carbon aerogels as an efficient SeS 2 host for long life Na-SeS 2 batteries Nano Res. 13 967-74
  224. Yang T, Qi Y, Zhong W, Tao M, Guo B, Wu Y, Bao S J and Xu M 2021 A strategy for polysulfides/polyselenides protection based on Co 9 S 8 @SiO 2 /C host in Na-SeS 2 batteries Adv. Funct. Mater. 31 2001952
  225. Wang R, Wang D, Dong Y, Xie B, Wu X, Wu Q, Zhu S, Diao G and Chen M 2023 Recent progress of advanced carbon-based cathode in sodium-selenium batteries J. Alloys Compd. 952 169980
  226. Tian H, Tian H, Wang S, Chen S, Zhang F, Song L, Liu H, Liu J and Wang G 2020 High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode Nat. Commun. 11 5025-36
  227. Read J 2023 Global sodium-ion battery market reaches value of US$ 4.22 Bn by 2033 The EMSNow Story (available at: www.emsnow.com/global-sodium-ion-battery-market- reaches-value-of-us-4-22-bn-by-2033/#:∼:text= Worldwide%20sales%20of%20 sodium%2Dion,research%20and%20competitive%20 intelligence%20provider)
  228. Global All-Solid-State Battery Industry Research Report 2023 Competitive landscape, market size, regional status and prospect January 2023 Market Growth Report. Market Data Analysis (available at: www.linkedin.com/pulse/all- solid-state-battery-market-worth-us-1541923-08uwf)
  229. Global sodium sulfur battery market grows at staggering CAGR of 28.3% Straits Research (available at: https:// straitsresearch.com/press-release/global-sodium-sulfur- battery-growth#:∼:text=The%20global%20market%20 for%20sodium,cells%20will%20drive%20the%20market)
  230. Liang Y, Dong H, Aurbach D and Yao Y 2020 Current status and future directions of multivalent metal-ion batteries Nat. Energy 5 646-56
  231. Scott A 2023 Flow batteries, the forgotten energy storage device Chemical Engineering News 101 (available at: https://cen.acs.org/magazine/101/10126.html
  232. Ke X, Prahl J M, Alexander J I D and Savinell R F 2017 Mathematical modeling of electrolyte flow in a segment of flow channel over porous electrode layered system in vanadium flow battery with flow field design Electrochim. Acta 223 124-34
  233. Bamgbopa M O, Almheiri S and Sun H 2017 Prospects of recently developed membraneless cell designs for redox flow batteries Renew Sustain. Energy Rev. 70 506-18
  234. Wang C, Pan Z, Chen H, Pu X and Chen Z 2023 MXene-based materials for multivalent metal-ion batteries Batteries 9 174
  235. Ponrouch A, Bitenc J, Dominko R, Lindahl N, Johansson P and Palacin M R 2019 Multivalent rechargeable batteries Energy Storage Mater. 20 253-62
  236. Canepa P, Sai Gautam G, Hannah D C, Malik R, Liu M, Gallagher K G, Persson K A and Ceder G 2017 Odyssey of multivalent cathode materials: open questions and future challenges Chem. Rev. 117 4287-341
  237. Xu Y, Wu X, Sandstrom S K, Hong J J, Jiang H, Chen X and Ji X 2021 Fe-ion bolted VOPO 4 •2H 2 O as an aqueous Fe-ion battery electrode Adv. Mater. 33 2105234
  238. Li Y and Dai H 2014 Recent advances in zinc-air batteries Chem. Soc. Rev. 43 5257-75
  239. Zhang J, Zhou Q, Tang Y, Zhang L and Li Y 2019 Zinc-air batteries: are they ready for prime time? Chem. Sci. 10 8924-9
  240. Tutusaus O, Mohtadi R, Arthur T S, Mizuno F, Nelson E G and Sevryugina Y V 2015 An efficient Halogen-free electrolyte for use in rechargeable magnesium batteries Angew. Chem., Int. Ed. 54 7900-4
  241. Jäckle M, Helmbrecht K, Smits M, Stottmeister D and Groß A 2018 Self-diffusion barriers: possible descriptors for dendrite growth in batteries? Energy Environ. Sci. 11 3400-7
  242. Ta K, See K A and Gewirth A A 2018 Elucidating Zn and Mg electrodeposition mechanisms in nonaqueous electrolytes for next-generation metal batteries J. Phys. Chem. C 122 13790-6
  243. Davidson R et al 2020 Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities Mater. Horiz. 7 843-54
  244. Ding M S, Diemant T, Behm R J, Passerini S and Giffin G A 2018 Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes J. Electrochem. Soc. 165 A1983-A1990
  245. Ma Z, MacFarlane D R and Kar M 2019 Mg cathode materials and electrolytes for rechargeable Mg batteries: a review Batter. Supercaps 2 115-27
  246. Rajput N N, Seguin T J, Wood B M, Qu X and Persson K A 2018 Elucidating solvation structures for rational design of multivalent electrolytes←A review Top. Curr. Chem. 376 19
  247. Zhao-Karger Z, Gil Bardaji M E, Fuhr O and Fichtner M 2017 A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries J. Mater. Chem. A 5 10815-20
  248. Doe R E, Han R, Hwang J, Gmitter A J, Shterenberg I, Yoo H D, Pour N and Aurbach D 2014 Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries Chem. Commun. 50 243-5
  249. See K A, Chapman K W, Zhu L, Wiaderek K M, Borkiewicz O J, Barile C J, Chupas P J and Gewirth A A 2016 The interplay of Al and Mg speciation in advanced Mg battery electrolyte solutions J. Am. Chem. Soc. 138 328-37
  250. Hahn N T, Seguin T J, Lau K C, Liao C, Ingram B J, Persson K A and Zavadil K R 2018 Enhanced stability of the carba-closo-dodecaborate anion for high-voltage battery electrolytes through rational design J. Am. Chem. Soc. 140 11076-84
  251. Seguin T J, Hahn N T, Zavadil K R and Persson K A 2019 Elucidating non-aqueous solvent stability and associated decomposition mechanisms for Mg energy storage applications from first-principles Front. Chem. 7 175
  252. Zhang Z et al 2017 Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries Adv. Energy Mater. 7 1602055
  253. Sun X, Bonnick P and Nazar L F 2016 Layered TiS 2 positive electrode for Mg batteries ACS Energy Lett. 1 297-301
  254. Bonnick P, Sun X, Lau K C, Liao C and Nazar L F 2017 Monovalent versus divalent cation diffusion in thiospinel Ti 2 S 4 J. Phys. Chem. Lett. 8 2253-7
  255. Mao M, Gao T, Hou S and Wang C 2018 A critical review of cathodes for rechargeable Mg batteries Chem. Soc. Rev. 47 8804-41
  256. Verrelli R, Black A P, Pattanathummasid C, Tchitchekova D, Ponrouch A, Oro-Sole J, Frontera C, Bard F, Rozier P and Palacín M R 2018 On the strange case of divalent ions intercalation in V 2 O 5 J. Power Sources 407 162-72
  257. Orikasa Y et al 2014 High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements Sci. Rep. 4 5622
  258. Rong Z, Xiao P, Liu M, Huang W, Hannah D C, Scullin W, Persson K A and Ceder G 2017 Fast Mg2+ diffusion in Mo 3 (PO 4 ) 3 O for Mg batteries Chem. Commun. 53 7998-8001
  259. Sano H, Senoh H, Yao M, Sakaebe H and Kiyobayashi T 2012 Mg2þ storage in organic positive-electrode active material based on 2,5-dimethoxy-1,4-benzoquinone Chem. Lett. 41 1594-6
  260. Bitenc J, Pirnat K, Banc ˇic ˇT, Gaberšc ˇek M, Genorio B, Randon-Vitanova A and Dominko R 2015 Anthraquinone-based polymer as cathode in rechargeable magnesium batteries ChemSusChem 8 4128-32
  261. Bitenc J, Pirnat K, Mali G, Novosel B, Randon Vitanova A and Dominko R 2016 Poly(hydroquinoyl-Benzoquinonyl sulfide) as an active material in Mg and Li organic batteries Electrochem. Commun. 69 1-5
  262. Pan B et al 2016 Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries Adv. Energy Mater. 6 1600140
  263. Bancic T, Bitenc J, Pirnat K, Lautar A K, Grdadolnik J, Randon Vitanova A and Dominko R 2018 Electrochemical performance and redox mechanism of naphthalenehydrazine diimide polymer as a cathode in magnesium battery J. Power Sources 395 25-30
  264. Vizintin A, Bitenc J, Kopac ˇLautar A, Pirnat K, Grdadolnik J, Stare J, Radon-Vitanova A and Dominko R 2018 Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy Nat. Commun. 9 661
  265. Chen C, Wang J, Zhao Q, Wang Y and Chen J 2016 Layered Na 2 Ti 3 O 7 /MgNaTi 3 O 7 /Mg 0.5 NaTi 3 O 7 nanoribbons as high-performance anode of rechargeable Mg-Ion batteries ACS Energy Lett. 1 1165-72
  266. Tan Y H, Yao W T, Zhang T, Ma T, Lu L L, Zhou F, Yao H-B and Yu S H 2018 High voltage magnesium-ion battery enabled by nanocluster Mg 3 Bi 2 alloy anode in noncorrosive electrolyte ACS Nano 12 5856-65
  267. Niu J, Gao H, Ma W, Luo F, Yin K, Peng Z and Zhang Z 2018 Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries Energy Storage Mater. 14 351-60
  268. Yaghoobnejad Asl H, Fu J, Kumar H, Welborn S S, Shenoy V B and Detsi E 2018 In situ dealloying of bulk Mg 2 Sn in Mg-ion half cell as an effective route to nanostructured Sn for high performance Mg-ion battery anodes Chem. Mater. 30 1815-24
  269. Wu N, Yang Z Z, Yao H R, Yin Y X, Gu L and Guo Y G 2015 Improving the electrochemical performance of the Li 4 Ti 5 O 12 electrode in a rechargeable magnesium battery by lithium-magnesium Co-intercalation Angew Chem., Int. Ed. 54 5757-61
  270. Muldoon J, Bucur C B and Gregory T 2014 Quest for nonaqueous multivalent secondary batteries: magnesium and beyond Chem. Rev. 114 11683-720
  271. Ponrouch A, Frontera C, Barde F and Palacin M R 2016 Towards a calcium-based rechargeable battery Nat. Mater. 15 169-73
  272. Wang D, Gao X, Chen Y, Jin L, Kuss D and Bruce P G 2018 Plating and stripping calcium in an organic electrolyte Nat. Mater. 17 16-20
  273. Arroyo-de Dompablo M E, Krich C, Nava-Avendaño J, Palacín M R and Bardé F 2016 In quest of cathode materials for Ca ion batteries: the CaMO 3 perovskites (M 1 /4
  274. Mo, Cr, Mn, Fe, Co, and Ni) Phys. Chem. Chem. Phys. 18 19966-72
  275. Smeu M, Hossain S, Wang Z, Timoshevskii V A, Bevan K H and Zaghib K 2016 Theoretical investigation of Chevrel phase materials for cathodes accommodating Ca2þ ions J. Power Sources 306 431-6
  276. Arroyo-de Dompablo M E, Krich C, Nava-Avendaño J, Biskup N, Palacín M R and Bardé F 2016 A joint computational and experimental evaluation of CaMn 2 O 4 polymorphs as cathode materials for Ca ion batteries Chem. Mater. 28 6886-93
  277. Tchitchekova D, Frontera C, Ponrouch A, Krich C, Barde F and Palacín M R 2018 Electrochemical calcium extraction from 1D-Ca 3 Co 2 O 6 Dalton Trans. 47 11298-302
  278. Tchitchekova D, Ponrouch A, Verrelli R, Broux T, Frontera C, Sorrentino A, Barde F, Biskup N, Arroyo-de Dompablo M E and Palacín M R 2018 On the electrochemical intercalation of calcium and magnesium in TiS 2 : fundamental studies related to multivalent battery applications Chem. Mater. 30 847-56
  279. Shyamsunder A, Blanc L E, Assoud A and Nazar L F 2019 Reversible calcium plating and stripping at room temperature using a borate salt ACS Energy Lett. 4 2271-6
  280. Cabello M, Nacimiento F, Alcántara R, Lavela P, Pérez Vicente C and Tirado J L 2018 Applicability of molybdite as an electrode material in calcium batteries: a structural study of layer-type CaxMoO3 Chem. Mater. 30 5853-61
  281. Tojo T, Tawa H, Oshida N, Inada R and Sakurai Y 2018 Electrochemical characterization of a layered α-MoO 3 as a new cathode material for calcium ion batteries J. Electroanal. Chem. 825 51-56
  282. Fang G, Zhou J, Pan A and Liang S 2018 Recent advances in aqueous zinc-ion batteries ACS Energy Lett. 3 2480-501
  283. Monti D, Ponrouch A, Araujo R B, Barde F, Johansson P and Palacín M R 2019 Multivalent batteries-prospects for high energy density: Ca batteries Front. Chem. 7 79
  284. Hosein I D 2022 The importance of multivalent batteries Medium (available at: https://medium.com/@ian.hosein/ the-importance-of-multivalent-batteries-6774f2054c0e)
  285. Zinc-air Battery Market 2024 Market size and trends (available at: www.coherentmarketinsights.com/industry- reports/zinc-air-battery-market#:∼:text=Market%20
  286. Shah R, Mittal V, Matsil E and Rosenkranz A 2021 Magnesium-ion batteries for electric vehicles: current trends and future perspectives Adv. Mech. Eng. 13 168781402110033
  287. Hosein I D 2021 The promise of calcium batteries: open perspectives and fair comparisons ACS Energy Lett. 6 1560-5
  288. Aluminum Ion Battery Market 2023 Future market insights (available at: www.futuremarketinsights.com/reports/ aluminium-ion-battery-market)
  289. 360iResearch 2023 Next generation advanced batteries market (available at: www.360iresearch.com/library/ intelligence/next-generation-advanced-batteries)
  290. Custom Market Insights 2022 Global zinc-ion battery market 2023-2032 (available at: www.custommarketinsights. com/report/zinc-ion-battery-market/#:∼:text=As%20 per%20our%20study%2C%20the,USD%2013.3%20 billion%20by%202030)
  291. Noak J et al 2020 Redox flow batteries for renewable energy storage (Energy Storage News) (available at: www.energy- storage.news/redox-flow-batteries-for-renewable-energy- storage/)
  292. Zhang H et al (ed) 2018 Redox Flow Batteries Fundamentals and Applications (CRC Press) (https://doi.org/ 10.1201/9781315152684)
  293. The International Flow Battery Forum (IFBF) 2024 What is flow battery? (available at: https://flowbatteryforum.com/ what-is-a-flow-battery/)
  294. Kogler M, Rauh N, Gahlawat S, Ashraf M A, Ostermann M, Valtiner M and Pichler C M 2024 Unveiling the role of electrografted carbon-based electrodes for vanadium redox flow batteries ChemSusChem 17 e202301659
  295. Stauffer N W 2023 Flow batteries for grid scale energy storage MIT News (available at: https://news.mit.edu/ 2023/flow-batteries-grid-scale-energy-storage-0407)
  296. Charette R N 2023 Can flow batteries finally beat lithium? IEEE Spectrum (available at: https://spectrum.ieee.org/ flow-battery-2666672335)
  297. Arevalo-Cid P, Dias P, Mendes A and Azevedo J 2021 Redox flow batteries: a new frontier on energy Storage Sustain. Energy Fuels 5 5366
  298. Sánchez-Díez E, Ventosa E, Guarnieri M, Trovò A, Flox C, Marcilla R, Soavi F, Mazur P, Aranzabe E and Ferret R 2021 Redox flow batteries: status and perspective towards sustainable stationary energy storage J. Power Sources 481 228804
  299. Olabi A G, Allam M A, Abdelkareem M A, Deepa T D, Alami A H, Abbas Q, Alkhalidi A and Sayed E T 2023 Redox flow batteries: recent development in main components, emerging technologies, diagnostic techniques, large-scale applications, and challenges and barriers Batteries 9 409
  300. Aluko A and Knight A 2023 A review on vanadium redox flow battery storage systems for large-scale power systems application IEEE Access 11 13773
  301. Ye R, Henkensmeier D, Yoon S J, Huang Z, Kim D K, Chang Z, Kim S and Chen R 2018 Redox flow batteries for energy storage: a technology review J. Electrochem. Energy Convers. Storage 15 010801
  302. Tolmachev Y V 2023 Flow batteries from 1879 to 2022 and beyond J. Electrochem. Soc. 170 030505
  303. Soloveichik G L 2015 Flow batteries: current status and trends Chem. Rev. 115 11533-58
  304. Chen H and Lu Y C 2016 A high-energy-density multiple redox semi-solid-liquid flow battery Adv. Energy Mater. 6 1-9
  305. Pan F and Wang Q 2015 Redox species of redox flow batteries: a review Molecules 20 20499-517
  306. Bae D, Seger B, Vesborg P C K, Hansen O and Chorkendorff I 2017 Strategies for stable water splitting via protected photoelectrodes Chem. Soc. Rev. 46 1933-54
  307. Milshtein J D, Barton J L, Carney T J, Kowalski J A, Darling R M and Brushett F R 2017 Towards low resistance nonaqueous redox flow batteries J. Electrochem. Soc. 164 A2487-99
  308. Arenas L F, Ponce de León C and Walsh F C 2017 Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage J. Energy Storage 11 119-53
  309. Barton J L, Milshtein J D, Hinricher J J and Brushett F R 2018 Quantifying the impact of viscosity on mass-transfer coefficients in redox flow batteries J. Power Sources 399 133-43
  310. Zhang J, Jiang G, Xu P, Ghorbani Kashkooli A, Mousavi M, Yu A and Chen Z 2018 An all-aqueous redox flow battery with unprecedented energy density Energy Environ. Sci. 11 2010-5
  311. Luo J, Wu W, Debruler C, Hu B, Hu M and Liu T L 2019 A 1.51 v pH neutral redox flow battery towards scalable energy storage J. Mater. Chem. A 7 9130-6
  312. Chakrabarti B, Rubio-Garcia J, Kalamaras E, Yuflt V, Tariq F, Low C T J, Kucernak A and Brandon N 2020 Evaluation of a non-aqueous vanadium redox flow battery using a deep eutectic solvent and graphene-modified carbon electrodes via electrophoretic deposition Batteries 6 38
  313. Schaltin S, Li Y, Brooks N R, Sniekers J, Vankelecom I F J, Binnemans K and Fransaer J 2016 Towards an all-copper redox flow battery based on a copper-containing ionic liquid Chem. Commun. 52 414-7
  314. Bahadori L, Hashim M A, Manan N S A, Mjalli F S, Alnashef I M, Brandon N P and Chakrabarti M H 2016 Investigation of ammonium-And phosphonium-based deep eutectic solvents as electrolytes for a non-aqueous all-vanadium redox cell J. Electrochem. Soc. 163 A632-8
  315. Zhang C, Ding Y, Zhang L, Wang X, Zhao Y, Zhang X and Yu G 2017 A sustainable redox-flow battery with an aluminum-based, deep-eutectic-solvent anolyte Angew. Chem., Int. Ed. 56 7454-9
  316. Zhang C, Niu Z, Ding Y, Zhang L, Zhou Y, Guo X, Zhang X, Zhao Y and Yu G 2018 Highly concentrated phthalimide-based anolytes for organic redox flow batteries with enhanced reversibility Chem 4 2814-25
  317. Wang Y, Niu Z, Zheng Q, Zhang C, Ye J and Dai G 2018 Zn-based eutectic mixture as anolyte for hybrid redox flow batteries Sci. Rep. 8 8-15
  318. Ding Y, Zhang C, Zhang L, Wei H, Li Y and Yu G 2018 Insights into hydrotropic solubilization for hybrid ion redox flow batteries ACS Energy Lett. 3 2641-8
  319. Xu Q, Qin L Y, Ji Y N, Leung P K, Su H N, Qiao F, Yang W W, Shah A A and Li H M 2019 A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability Electrochim. Acta 293 426-31
  320. Li B and Liu J 2017 Progress and directions in low-cost redox-flow batteries for large-scale energy storage Natl Sci. Rev. 4 91-105
  321. Zhang C, Zhang L, Ding Y, Peng S, Guo X, Zhao Y, He G and Yu G 2018 Progress and prospects of next-generation redox flow batteries Energy Storage Mater. 15 324-50
  322. Choi C, Kim S, Kim R, Choi Y, Kim S, Jung H, Yang J H and Kim H-T 2017 A review of vanadium electrolytes for vanadium redox flow batteries Renew. Sustain. Energy Rev. 69 263-74
  323. Rubio-Garcia J, Kucernak A, Zhao D, Li D I, Fahy K F, Yuflt V, Brandon N and Gomez-Gonzalez M 2018 Hydrogen/manganese hybrid redox flow battery J. Phys. Energy 1 015006
  324. Wei L, Jiang H R, Ren Y X, Wu M C, Xu J B and Zhao T S 2019 Investigation of an aqueous rechargeable battery consisting of manganese tin redox chemistries for energy storage J. Power Sources 437 226918
  325. Dong Y, Kaku H, Miyawaki H, Tatsumi R, Moriuchi K and Shigematsu T 2017 Titanium-manganese electrolyte for redox flow battery SEI Tech. Rev. 84 35-40
  326. Dinesh A et al 2018 Iron-based flow batteries to store renewable energies Environ. Chem. Lett. 16 683-94
  327. Vangelder L E, Kosswattaarachchi A M, Forrestel P L, Cook T R and Matson E M 2018 Polyoxovanadate-Alkoxide clusters as multi-electron charge carriers for symmetric non-Aqueous redox flow batteries Chem. Sci. 9 1692-9
  328. Feng T, Wang H, Liu Y, Zhang J, Xiang Y and Lu S 2019 A redox flow battery with high capacity retention using 12-phosphotungstic acid/iodine mixed solution as electrolytes J. Power Sources 436 226831
  329. Friedl J, Pfanschilling F L, Holland-Cunz M V, Fleck R, Schricker B, Wolfschmidt H and Stimming U 2019 A polyoxometalate redox flow battery: functionality and upscale Clean Energy 3 278-87
  330. Laramie S M, Milshtein J D, Breault T M, Brushett F R and Thompson L T 2016 Performance and cost characteristics of multi-electron transfer, common ion exchange nonaqueous redox flow batteries J. Power Sources 327 681-92
  331. Meda L, Oldani F, Tozzola G, Caramori S, Benazzi E, Cristino V and Bignozzi C A 2018 Searching for new redox-complexes\inorganic flow batteries Solid State Ion. 317 142-8
  332. Hu B, Debruler C, Rhodes Z, Liu T, Hu B and Debruler C 2017 A long cycling aqueous organic redox flow battery (AORFB) towards sustainable and safe energy storage J. Am. Chem. Soc. 139 1207-14
  333. Kim H S, Hwang S, Mun J, Park H, Ryu J H and Oh S M 2019 Counter anion effects on the energy density of Ni(II)-chelated tetradentate azamacrocyclic complex cation as single redox couple for non-aqueous flow batteries Electrochim. Acta 308 227-30
  334. Gerken J B, Anson C W, Preger Y, Symons P G, Genders J D, Qiu Y, Li W, Root T W and Stahl S S 2020 Comparison of quinone-based catholytes for aqueous redox flow batteries and demonstration of long-term stability with tetrasubstituted quinones Adv. Energy Mater. 10 2000340
  335. Tong L, Goulet M-A, Tabor D P, Kerr E F, De Porcellinis D, Fell E M, Aspuru-Guzik A, Gordon R G and Aziz M J 2019 Molecular Engineering of an alkaline naphthoquinone flow battery ACS Energy Lett. 4 1880-7
  336. Debruler C, Hu B, Moss J, Luo J and Liu T L 2018 A sulfonate-functionalized viologen enabling neutral cation exchange, aqueous organic redox flow batteries toward renewable energy storage ACS Energy Lett. 3 663-8
  337. Li W et al 2019 A long lifetime aqueous organic solar flow battery Adv. Energy Mater. 9 1900918
  338. Schwenzer B, Zhang J, Kim S, Li L, Liu J and Yang Z 2011 Membrane development for vanadium redox flow batteries ChemSusChem 4 1388-406
  339. Khataee A, Pan D, Olsson J S, Jannasch P and Lindström R W 2021 Asymmetric cycling of vanadium redox flow batteries with a poly(arylene piperidinium)-based anion exchange membrane J. Power Sources 483 229202
  340. Cha M S, Jeong H Y, Shin H Y, Hong S H, Kim T H, Oh S G, Lee J Y and Hong Y T 2017 Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application J. Power Sources 363 78-86
  341. Ren J, Dong Y, Dai J, Hu H, Zhu Y and Teng X 2017 A novel chloromethylated/quaternized poly(sulfone)/poly(vinylidene fluoride) anion exchange membrane with ultra-low vanadium permeability for all vanadium redox flow battery J. Membr. Sci. 544 186-94
  342. Gong S J, Kim D, Cho E, Hwang S S and Won J 2017 A chitosan/urushi anion exchange membrane for a non-aqueous redox flow battery ChemistrySelect 2 1843-9
  343. Bhattarai A, Whitehead A H, Schweiss R, Scherer G G, Skyllas-Kazacos M, Wai N, Nguyen T D, Ghimire P C, Oo M O and Hng H H 2019 Anomalous behavior of anion exchange membrane during operation of a vanadium redox flow battery ACS Appl. Energy Mater. 2 1712-9
  344. Dai J, Dong Y, Gao P, Ren J, Yu C, Hu H, Zhu Y and Teng X 2018 A sandwiched bipolar membrane for all vanadium redox flow battery with high coulombic efficiency Polymer 140 233-9
  345. Sharma P P, Paul A, Srivastava D N and Kulshrestha V 2018 Semi-interpenetrating network-type cross-linked amphoteric ion-exchange membrane based on styrene sulfonate and vinyl benzyl chloride for vanadium redox flow battery ACS Omega 3 9872-9
  346. Liu S, Wang L, Li D, Liu B, Wang J and Song Y 2015 Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone)/quaternized poly(ether imide) for vanadium redox flow battery applications J. Mater. Chem. A 3 17590-7
  347. Gan R, Ma Y, Li S, Zhang F and He G 2018 Facile fabrication of amphoteric semi-interpenetrating network membranes for vanadium flow battery applications J. Energy Chem. 27 1189-97
  348. Niu R, Kong L, Zheng L, Wang H and Shi H 2017 Novel graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) acid-base hybrid membrane for vanadium redox flow battery J. Membr. Sci. 525 220-8
  349. Zhou X L, Zhao T S, An L, Zeng Y K and Wei L 2016 Modeling of ion transport through a porous separator in vanadium redox -ow batteries J. Power Sources 327 67-76
  350. Bereciartua P J et al 2017 Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene Science 358 1068-71
  351. Bhattarai A, Wai N, Schweiss R, Whitehead A, Lim T M and Hng H H 2017 Advanced porous electrodes with flow channels for vanadium redox -ow battery J. Power Sources 341 83-90
  352. Banerjee R, Bevilacqua N, Mohseninia A, Wiedemann B, Wilhelm F, Scholta J and Zeis R 2019 Carbon felt electrodes for redox flow battery: impact of compression on transport properties J. Energy Storage 26 100997
  353. Greese T and Reichenauer G 2021 Anode kinetics degradation in vanadium redox -ow batteries-Reversible inhibition of the V2+/V3+-reaction due to V(II)-adsorption J. Power Sources 500 229958
  354. Ribadeneyra M C et al 2020 Lignin-derived electrospun freestanding carbons as alternative electrodes for redox -ow batteries Carbon 157 847-56
  355. Amini K, Gostick J and Pritzker M D 2020 Metal and metal oxide electrocatalysts for redox flow batteries Adv. Funct. Mater. 30 1910564
  356. Vázquez-Galván J, Flox C, Jervis J R, Jorge A B, Shearing P R and Morante J R 2019 High-power nitride TiO 2 carbon felt as the negative electrode for allvanadium redox flow batteries Carbon 148 91-104
  357. Chen T S, Huang S L, Chen M L, Tsai T J and Lin Y S 2019 Improving electrochemical activity in a semi-V-I redox flow battery by using a C-TiO 2 -Pd composite electrode J. Nanomater. 2019 7460856
  358. Jiang Y et al 2019 Electrocatalytic activity of MnO 2 nanosheet array decorated carbon paper as superior negative electrode for vanadium redox flow batteries Electrochim. Acta 322 134754
  359. Aaron D S, Liu Q, Tang Z, Grim G M, Papandrew A B, Turhan A, Zawodzinski T A and Mench M M 2012 Dramatic performance gains in vanadium redox flow batteries through modified cell architecture J. Power Sources 206 450-3
  360. Hyun K, Shin M and Kwon Y 2022 Performance evaluation of zero-gap vanadium redox flow battery using composite electrode consisting of graphite and buckypaper Korean J. Chem. Eng. 39 3315-22
  361. Ke X, Prahl J M, Alexander J I D, Wainright J S, Zawodzinski T A and Savinell R F 2018 Rechargeable redox flow batteries: flow fields, stacks and design considerations Chem. Soc. Rev. 47 8721-43
  362. Darling R M and Perry M L 2014 The Influence of electrode and channel configurations on flow battery performance J. Electrochem. Soc. 161 A1381-7
  363. Mordor Intelligence 2024 Flow battery market size-industry report on share, growth trends & forecasts analysis (2024-2029) Mordor Intelligence (available at: www.mordorintelligence.com/industry-reports/ flowbattery-market)
  364. Kitagawa M 2022 Fluoride-ion batteries take spotlight in EV tech race Nikkei Asia (available at: https://asia.nikkei.com/ Business/Automobiles/Fluoride-ion-batteries-take- spotlight-in-EV-tech-race)
  365. Shepard P 2018 Fluoride-ion breakthrough promises 10x energy density compared with lithium-ions EE Power (available at: https://eepower.com/news/opposites-in- nature-fluoride-and-lithium-compete-for-higher-energy- batteries/#)
  366. Nowroozi M A, Mohammad I, Molaiyan P, Wissel K, Munnangi A R and Clemens O 2021 Fluoride ion batteries-past, present, and future J. Mater. Chem. A 9 5980
  367. Xiao A W, Galatolo G and Pasta M 2021 The case for fluoride-ion batteries Joule 5 2823-44
  368. Gao Y et al 2022 High-energy batteries: beyond lithium-ion and their long road to commercialisation Nano Micro Lett. 14 94
  369. TUDelft 2022 Fluoride ion batteries TU Delft (available at: www.tudelft.nl/tnw/over-faculteit/afdelingen/radiation- sciencetechnology/research/research-groups/storage- ofelectrochemical-energy/research-2/fluoride-ion- batteries)
  370. Lee D and Lee H 2017 Controlling oxygen mobility in ruddlesden-popper oxides Materials 10 368
  371. Nowroozi M A, de Laune B and Clemens O 2018 ChemistryOpen 7 617-23
  372. Gopinath S V, Phanendra P V R L, John B and Mercy T D 2022 Fluoride-ion batteries: state-of-the-art and future perspectives Sustain. Mater. Technol. 32 e00436
  373. Anji Reddy M and Fichtner M 2011 Batteries based on fluoride shuttle J. Mater. Chem. 21 17059-62
  374. Davis V K et al 2018 Room-temperature cycling of metal fluoride electrodes: liquid electrolytes for high-energy fluoride ion cells Science 362 1144-8
  375. Motohashi K, Nakamura T, Kimura Y, Uchimoto Y and Amezawa K 2019 Influence of microstructures on conductivity in Tysonite-type fluoride ion conductors Solid State Ion. 338 113-12
  376. Toma O, Rotella H, Dahab H, Maisonneuve V and Boulard B 2021 Tysonite-type solid state electrolyte for fluoride ion batteries: highly dense thin film by PVD processing J. Alloys Compd. 862 158683
  377. Ji Q, Melnikova N A, Glumov O V, Trefilov I O, Eliseeva S N and Murin I V 2023 Mechanochemical synthesis, microstructure and electrochemical properties of solid electrolytes with stabilized fluorite-type structure in the PbF 2 -SrF 2 -KF system for solid-state fluoride-ion batteries Ceram. Int. 49 16901-8
  378. Xiong L, Wen P, Zhang Y, Liu X, Ning J, Wang X, Wang H and Yang Z 2022 Exploring efficient solid electrolyte based on Nd doped BaSnF 4 for fluoride ion batteries at atomic scale J. Power Sources 518 518230718
  379. Liu J et al 2023 Construction and interfacial modification of a β-PbSnF 4 electrolyte with high intrinsic ionic conductivity for a room-temperature fluoride-ion battery ACS Appl. Mater. Interfaces 15 36373-83
  380. Alshangiti O, Galatolo G, Rees G J, Guo H, Quirk J A, Dawson J A and Pasta M 2023 Solvent-in-salt electrolytes for fluoride ion batteries ACS Energy Lett. 8 2668-73
  381. Galatolo G, Alshangiti O, Di Mino C, Matthews G, Xiao A W, Rees G J, Schart M, Chart Y A, Olbrich L F and Pasta M 2024 Advancing fluoride-ion batteries with a Pb-PbF2 Counter electrode and a diluted liquid electrolyte ACS Energy Lett. 9 85-92
  382. Konishi H, Minato T, Abe T and Ogumi Z 2017 J. Electrochem. Soc. 164 A3702-8
  383. Yamamoto T, Matsumoto K, Hagiwara R and Nohira T 2019 ACS Appl. Energy Mater. 2 6153-7
  384. Zhang Z, Hu X, Zhou Y, Wang S, Yao L, Pan H, Su C-Y, Chen F and Hou X 2018 J. Mater. Chem. A 6 8244-50
  385. Hou X, Zhang Z, Shen K, Cheng S, He Q, Shi Y, Yu D Y W, Su C-Y, Li L-J and Chen F 2019 J. Electrochem. Soc. 166 A2419-24
  386. Mohammad I and Witter R 2019 Mater. Lett. 244 159-62
  387. Gschwind F, Rodriguez-Garcia G, Sandbeck D J S, Gross A, Weil M, Fichtner M and Hörmann N 2016 Fluoride ion batteries: theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes J. Fluor. Chem. 182 76-90
  388. Konishi H, Minato T, Abe T and Ogumi Z 2020 ChemistrySelect 5 4943-6
  389. Takami T, Saito T, Kamiyama T, Kawahara K, Fukunaga T and Abe T 2020 APL Mater. 8 051103
  390. Zhang L, Reddy M A and Fichtner M 2018 J. Solid State Electrochem. 22 997-1006
  391. Olbrich L F, Xiao A W and Pasta M 2021 Conversion-type fluoride cathodes: current state of the art Curr. Opin. Electrochem. 30 100779
  392. Konishi H, Minato T, Abe T and Ogumi Z 2020 Reversible electrochemical reaction of a fluoride shuttle battery with a bismuth(III) fluoride electrode and electrolyte containing Triphenylboroxine as an anion acceptor ChemistrySelect 5 6237-41
  393. Zhang D et al 2021 Cu-Pb nanocomposite cathode material toward room-temperature cycling for all-solid-state fluoride-ion batteries ACS Appl. Energy Mater. 4 3352-7
  394. Yoshinari T et al 2021 Kinetic analysis and alloy designs for metal/ metal fluorides toward high rate-capability for all-solid-state fluoride-ion batteries J. Mater. Chem. A 9 7018-24
  395. Zhang D et al 2021 Understanding the reaction mechanism and performances of 3d transition metal cathodes for all-solid-state fluoride ion batteries J. Mater. Chem. A 9 406-12
  396. Miki H, Yamamoto K, Nakaki H and Yoshinari T 2020 High capacity manganese layered-perovskite cathode for fluoride ion batteries involving cationic and anionic redox reaction Research Square PREPRINT (Version 1) pp 1-34
  397. Nowroozi M A, Wissel K, Donzelli M, Hosseinpourkahvaz N, Plana-Ruiz S, Kolb U, Schoch R, Bauer M, Malik A M and Rohrer J 2020 High cycle life all-solid-state fluoride ion battery with La 2 NiO (4+d) high voltage cathode Commun. Mater. 1 27
  398. McTaggart D H, Sundberg J D, McRae L M and Warren S C 2023 Assessing ternary materials for fluoride-ion batteries Sci. Data 10 90
  399. Zaheer W et al 2020 ACS Energy Lett. 5 2520-6
  400. Nowroozi M A, Ivlev S, Rohrer J and Clemens O 2018 La2CoO4: a new intercalation based cathode material for fluoride ion batteries with improved cycling stability J. Mater. Chem. A 6 4658-69
  401. Wissel K 2020 PhD Thesis Technische Universit¨at Darmstadt (https://doi.org/10.25534/tuprints-00013383)
  402. Wissel K, Dasgupta S, Benes A, Schoch R, Bauer M, Witte R, Fortes A D, Erdem E, Rohrer J and Clemens O 2018 Developing intercalation-based anode materials for fluoride-ion batteries: topochemical reduction of Sr 2 TiO 3 F 2 via a hydride based defluorination process J. Mater. Chem. A 6 22013-26
  403. Hartman S T and Mishra R 2020 J. Mater. Chem. A 8 24469-76
  404. Wissel K, Malik A M, Vasala S, Plana-Ruiz S, Kolb U, Slater P R, da Silva I, Alff L, Rohrer J and Clemens O 2020 Chem. Mater. 32 3160-79
  405. Wissel K, Vogel T, Dasgupta S, Fortes A D, Slater P R and Clemens O 2020 Inorg. Chem. 59 1153-63
  406. Liu C, Nikolaev S A, Ren W and Burton L A 2020 Electrides: a review J. Mater. Chem. C 8 10551-67
  407. Wang Y and Kuchena S F 2022 Recent progress in aqueous ammonium-ion batteries ACS Omega 7 33732-48
  408. Pan Y, Yuan L, Liu L, Fang W, Hou Y, Fu L and Wu Y 2023 Critical advances of aqueous rechargeable ammonium ion batteries Small Struct. 4 2300201
  409. Yan L, Qi Y-E, Dong X, Wang Y and Xia Y 2021 Ammonium-ion batteries with a wide operating temperature window from -40 to 80 • C eScience 1 212-8
  410. Han J, Varzi A and Passerini S 2022 The emergence of aqueous ammonium-ion batteries Angew. Chem., Int. Ed. 61 e202115046
  411. Liu Q, Ye F, Guan K, Yang Y, Dong H, Wu Y, Tang Z and Hu L 2023 Adv. Energy Mater. 13 2202908
  412. Zhang R, Wang S, Chou S and Jin H 2022 Research development on aqueous ammonium-ion batteries Adv. Funct. Mater. 32 2112179
  413. Liang G, Mo F, Ji X and Zhi C 2021 Non-metallic charge carriers for aqueous batteries Nat. Rev. Mater. 6 109-23
  414. Huang M et al 2023 NH 4 + deprotonation at interfaces induced reversible H 3 O + /NH 4 + Co-insertion/extraction Angew. Chem., Int. Ed. 62 e202218922
  415. Xia M, Zhang X, Yu H, Yang Z, Chen S, Zhang L, Shui M, Xie Y and Shu J 2021 Hydrogen bond chemistry in Fe 4 [Fe (CN) 6] 3 host for aqueous NH4+ batteries Chem. Eng. J. 421 127759
  416. Zhang X, Xia M, Liu T, Peng N, Yu H, Zheng R, Zhang L, Shui M and Shu J 2021 Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage Chem. Eng. J. 421 127767
  417. Zhang H, Tian Y, Wang W, Jian Z and Chen W 2022 Organic ammonium ion battery: a new strategy for nonmetallic ion energy storage system Angew. Chem. 61 e202204351
  418. Xing J, Fu X, Guan S, Zhang Y, Lei M and Peng Z 2021 Novel KV-Fe Prussian blue analogues nanocubes for high-performance aqueous ammonium ion batteries Appl. Surf. Sci. 543 148843
  419. Dong S et al 2019 Chem 5 1537
  420. Xu W, Zhang L, Zhao K, Sun X and Wu Q 2020 Layered ferric vanadate nanosheets as a high-rate NH4+ storage electrode Electrochim. Acta 360 137008
  421. Li H, Yang J, Cheng J, He T and Wang B 2020 Flexible aqueous ammonium-ion full cell with high rate-capability and long cycle life Nano Energy 68 104369
  422. Yang D, Song Y, Zhang M Y, Qin Z, Liu J and Liu X X 2022 Angew. Chem., Int. Ed. 61 e202207711
  423. Chen Q, Jin J, Song M, Zhang X, Li H, Zhang J, Hou G, Tang Y, Mai L and Zhou L 2022 Adv. Mater. 34 2107992
  424. Song Y, Pan Q, Lv H, Yang D, Qin Z, Zhang M Y, Sun X and Liu X X 2021 Angew. Chem., Int. Ed. 60 5718
  425. Zhang Y, An Y, Yin B, Jiang J, Dong S, Dou H and Zhang X 2019 A novel aqueous ammonium dual-ion battery based on organic polymers J. Mater. Chem. A 7 11314-20
  426. Kuchena S F and Wang Y 2020 Superior polyaniline cathode material with enhanced capacity for ammonium ion storage ACS Appl. Energy Mater. 3 11690-8
  427. Liang G, Wang Y, Huang Z, Mo F, Li X, Yang Q, Wang D, Li H, Chen S and Zhi C 2020 Adv. Mater. 32 1907802
  428. Dai J et al 2023 Adv. Funct. Mater. 33 2212440
  429. Zhang Y Z, Liang J, Huang Z, Wang Q, Zhu G, Dong S, Liang H and Dong X 2022 Adv. Sci. 9 2105158
  430. Yang L, Zheng W, Halim J, Rosen J, Sun Z and Barsoum M W 2023 A highly reversible aqueous ammonium-ion battery based on α-MoO 3 /Ti 3 C 2 Tz anodes and (NH 4 )xMnO 2 /CNTs cathodes Batter. Supercaps 6 e202200432
  431. Lukatskaya M R, Mashtalir O, Ren C E, Dall'Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W and Gogotsi Y 2013 Science 341 1502-5
  432. Niu K et al 2024 MXene-integrated perylene anode with ultra-stable and fast ammonium-ion storage for aqueous micro batteries Adv. Sci. 11 2305524
  433. Holoubek J J, Jiang H, Leonard D, Qi Y, Bustamante G C and Ji X 2018 Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte Chem. Commun. 54 9805-8
  434. Xie M, Zhao W, Mao Y and Huang F 2020 K 0.38 (H 2 O) 0.82 MoS 2 as a universal host for rechargeable aqueous cation (K + , Na + , Li + , NH 4 + , Mg 2+ , Al 3+ )
  435. batteries Dalton Trans. 49 3488-94
  436. Wu X, Qi Y, Hong J J, Li Z, Hernandez A S and Ji X 2017 Angew. Chem., Int. Ed. 56 13026-30
  437. Zhang S, Zhu K, Gao Y and Cao D 2023 ACS Energy Lett. 8 889
  438. Zhou G, An X, Zhou C, Wu Y, Miao Y-E and Liu T 2020 Highly porous electroactive polyimide-based nanofibrous composite anode for all-organic aqueous ammonium dual-ion batteries Compos. Commun. 22 100519
  439. Qiu S, Xu Y, Li X, Sandstrom S K, Wu X and Ji X 2021 Reinforced potassium and ammonium storage of the polyimide anode in acetate-based water-in-salt electrolytes Electrochem. Commun. 122 106880
  440. Sun Y, Yin B, Yang J, Ding Y, Li M, Li H, Li J, Jia B, Zhang S and Ma T 2023 Ammonium-ion energy storage devices for real-life deployment: storage mechanism, electrode design and system integration Energy Environ. Sci. 16 5568-604
  441. Ma Y, Sun T, Nian Q, Zheng S, Ma T, Wang Q, Du H and Tao Z 2021 Nano Res. 15 2047
  442. Tian Z, Kale V S, Wang Y, Kandambeth S, Czaban-Jozwiak J, Shekhah O, Eddaoudi M and Alshareef H N 2021 J. Am. Chem. Soc. 143 19178
  443. Song Y et al 2021 Ammonium-ion storage using electrodeposited manganese oxides Angew. Chem. 133 5782-6
  444. Zhang X, Xia M, Yu H, Zhang J, Yang Z, Zhang L and Shu J 2021 Nano-Micro Lett. 13 139
  445. Li S, Xia M, Xiao C, Zhang X, Yu H, Zhang L and Shu J 2021 Common ion effect enhanced Prussian blue analogues for aqueous ammonium ion storage Dalton Trans. 50 6520-7
  446. Wang P, Zhang Y F, Feng Z Y, Liu Y Y and Meng C G 2022 A dual-polymer strategy boosts hydrated vanadium oxide for ammonium-ion storage J. Colloid Interface Sci. 606 1322-32
  447. Farai Kuchena S and Wang Y 2021 A full flexible NH 4+ ion battery based on the concentrated hydrogel electrolyte for enhanced performance Chem. Eur. J. 27 15450-9
  448. Wang P, Zhang Y, Jiang H, Dong X and Meng C 2022 Ammonium vanadium oxide framework with stable NH 4 + aqueous storage for flexible quasi-solid-state supercapacitor Chem. Eng. J. 427 131548
  449. Zheng R, Li Y, Yu H, Zhang X, Yang D, Yan L, Li Y, Shu J and Su B-L 2023 Ammonium ion batteries: material, electrochemistry and strategy Angew Chem., Int. Ed. 62 e202301629
  450. Shi X, Liu H, Xu D, Yu Y and Lu X 2023 Advanced aqueous ammonium-ion batteries enabled by hydrogen bond modulation J. Phys. Chem. C 127 6233-8
  451. Jain S 2023 New advances in metal-free batteries with ammonium cations AZO Materials (available at: www. azom.com/article.aspx?ArticleID=22334)
  452. 2022 Polar Night Energy 2022 Sand battery Polar Night Energ (available at: https://polarnightenergy.fi/sand- battery)
  453. 2022 The Day 2022 The world's first sand battery The Day-Find Your Voice (available at: https://theday.co.uk/ posters/theworlds-first-sand-battery-r3/)
  454. Prasad S 2023 Dirt cheap backup: why Finland's installation of the world's 1st sand battery may be a game-changer DownToEarth (available at: www.downtoearth.org.in/ news/energy/dirt-cheap-backup-why-finland-s- installation-of-the-world-s-1st-sand-battery-may-be-a- game-changer-87804)
  455. Benke E 2022 How a sand battery could transform clean energy Future Planet (available at: www.bbc.com/future/ article/20221102-how-a-sand-battery-could-transform- clean-energy)
  456. Petrilo A 2023 Heating buildings with solar energy stored in sand IEEE Spectrum (available at: https://spectrum.ieee. org/polar-night-energy-sand-battery)
  457. Rubin S 2023 Could sand be the next lithium The Washington Post (available at: www.washingtonpost.com/ climate-solutions/2023/08/24/natural-battery-storage/)
  458. Sand Battery Features Infinity Turbine LLC (available at: https://infinityturbine.com/sand-battery-features.html)
  459. Poulose T, Kumar S and Torell G 2022 Power storage using sand and engineered materials as an alternative for existing energy storage technologies J. Energy Storage 51 10438
  460. Arfa M et al 2019 Heat storing sand battery Int. Res. J. Eng. Technol. 6 3579 (available at: www.irjet.net/volume6- issue04)
  461. Hunt J D et al 2023 Underground gravity energy storage: a solution for long-term energy storage Energies 16 825
  462. TWI 2024 What is a hydrogen fuel cell and how does it work ? TWI Ltd (available at: www.twi-global.com/ technical-knowledge/faqs/what-is-a-hydrogen- fuelcell#HowDoesAHydrogenFuelCellWork)
  463. Cogdell C et al 2018 Hydrogen fuel cell Design Life-Cycle (available at: www.designlife-cycle.com/hydrogen-fuel- cell)
  464. Fuel Cell Basics Fuel Cell & Hydrogen Energy Association (available at: www.fchea.org/fuelcells)
  465. Olabi A G and Sayed E T 2023 Developments in hydrogen fuel cells Energies 16 2431
  466. Fan L, Tu Z and Chan S H 2021 Recent development of hydrogen and fuel cell technologies: a review Energy Rep. 7 8421-46
  467. Ramaswamy R P 2009 Fuel cells-proton-exchange membrane fuel cells | membrane electrode assemblies Encyclopedia Electrochemical Power Sources pp 787-805
  468. Majlan E H, Rohendi D, Daud W R W, Husaini T and Haque M A 2018 Electrode for proton exchange membrane fuel cells: a review Renew. Sustain. Energy Rev. 89 117-34
  469. Jiao K et al 2021 Designing the next generation of proton-exchange membrane fuel cells Nature 595 361-9
  470. Zhu L Y et al 2022 Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications Pet. Sci. 19 1371-81
  471. Sutradhar S C, Rahman M M, Ahmed F, Ryu T, Yoon S, Lee S, Kim J, Lee Y, Jin Y and Kim W 2019 Thermally and chemically stable poly(phenylenebenzophenone) membranes for proton exchange membrane fuel cells by Ni (0) catalyst J. Ind. Eng. Chem. 76 233-9
  472. Neethu B, Bhowmick G D and Ghangrekar M M 2019 A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell Biochem. Eng. J. 148 170-7
  473. Haragirimana A, Ingabire P B, Zhu Y, Lu Y, Li N, Hu Z and Chen S 2019 Four-polymer blend proton exchange membranes derived from sulfonated poly(aryl ether sulfone)s with various sulfonation degrees for application in fuel cells J. Membr. Sci. 583 209-19
  474. Oh K, Kwon O, Son B, Lee D H and Shanmugam S 2019 Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition J. Membr. Sci. 583 103-9
  475. Parekh A 2022 Recent developments of proton exchange membranes for PEMFC: a review Front. Energy Res. 10 956132
  476. Xu G, Yang L, Li J, Liu C, Xing W and Zhu J 2023 Strategies for improving stability of Pt-based catalysts for oxygen reduction reaction Adv. Sens. Energy Mater. 2 100058
  477. Zhang X, Li H, Yang J, Lei Y, Wang C, Wang J, Tang Y and Mao Z 2021 Recent advances in Pt-based electrocatalysts for PEMFCs RSC Adv. 11 13316-28
  478. Khan I A A, Meda U S, Aman A, R S and Mudbidre R 2022 Alternatives to conventional platinum-based catalysts in polymer electrolyte membrane fuel cells ECS Trans. 107 5487
  479. Mitchem S 2020 Platinum-free catalysts could make cheaper hydrogen fuel cells Argonne National Laboratory News (available at: www.anl.gov/article/platinumfree-catalysts- could-make-cheaper-hydrogen-fuel-cells#:∼:text= The%20high%20cost%20of%20platinum,efficiency%20 of%20hydrogen%20fuel%20cells)
  480. Omrani R 2022 Gas diffusion layer for proton exchange membrane fuel cells PEM Fuel Cells Fundamentals, Advanced Technologies, and Practical Application ch 5, pp 91-122
  481. Navarro A J et al 2022 Production of gas diffusion layers with cotton fibers for their use in fuel cells Sci. Rep. 12 4219
  482. Perabo C. 2023 Gas diffusion layers-possible material choices CapLing Blog (available at: www.caplinq.com/ blog/what-materials-can-be-used-for-gas-diffusion-layers_ 4142/)
  483. Guo H et al 2022 Gas diffusion layer for proton exchange membrane fuel cells: a review Materials 15 8800
  484. Satjaritanun P, Shimpalee S and Zenyuk I V 2022 Gas Diffusion layers: experimental and modeling approach for morphological and transport properties Acc. Mater. Res. 3 416-25
  485. Hermann A, Chaudhuri T and Spagnol P 2005 Bipolar plates for PEM fuel cells: a review Int. J. Hydrog. Energy 30 1297-302
  486. Kahraman H and Orhan M F 2017 Flow field bipolar plates in a proton exchange membrane fuel cell: analysis & modeling Energy Convers. Manage. 133 363-84
  487. Shen J and Tu Z 2022 Flow channel design in a proton exchange membrane fuel cell: from 2D to 3D Int. J. Hydrog. Energy 47 3087-98
  488. Gong M, Zhang X, Chen M and Ren Y 2023 Proton exchange membrane fuel cell as an alternative to the internal combustion engine for emission reduction: a review on the effect of gas flow channel structures Atmosphere 14 439
  489. Baroutaji A, Arjunan A, Ramadan M, Robinson J, Alaswad A, Abdelkareem M A and Olabi A-G 2021 Advancements and prospects of thermal management and waste heat recovery of PEMFC Int. J. Thermofluids 9 100064
  490. Madheswaren D K, Jayakumar A and Varuvel E G 2022 Recent advancement on thermal management strategies in PEM fuel cell stack: a technical assessment from the context of fuel cell electric vehicle application Energy Sources A 44 3100-25
  491. Wang X R, Ma Y, Gao J, Li T, Jiang G Z and Sun Z Y 2021 Review on water management methods for proton exchange membrane fuel cells Int. J. Hydrog. Energy 46 12206-29
  492. Pourrahmani H and Van Herle J 2022 Water management of the proton exchange membrane fuel cells: optimizing the effect of microstructural properties on the gas diffusion layer liquid removal Energy 256 124712
  493. Xu X, Li K, Liao Z, Cao J and Wang R 2022 A closed-loop water management methodology for PEM fuel cell system based on impedance information feedback Energies 15 7561
  494. Bockris J O M 1975 Energy, the Solar Hydrogen Alternative (Wiley)
  495. Hydrogen Market 2023 Markets and Markets (available at: www.marketsandmarkets.com/Market-Reports/hydrogen- market-132975342.html)
  496. Nationalgrid 2024 The hydrogen color spectrum Nationalgrid (available at:www.nationalgrid.com/stories/ energy-explained/hydrogen-colour-spectrum#:∼:text= Grey%20hydrogen%20is%20created%20from,of%20 carbon%20capture%20and%20storage)
  497. Acar C and Dincer I 2018 3.1 Hydrogen production Comprehensive Energy Syst. 3 1-40
  498. Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds P E, Ekins P, Shah N and Ward K R 2019 The role of hydrogen and fuel cells in the global energy system Energy Environ. Sci. 12 463
  499. Fakhreddine O, Gharbia Y, Derakhshandeh J F and Amer A M 2023 Challenges and solutions of hydrogen fuel cells in transportation systems: a review and prospects World Electr. Veh. J. 14 156
  500. Tang D, Tan G-L, Li G-W, Liang J-G, Ahmad S M, Bahadur A, Humayun M, Ullah H, Khan A and Bououdina M 2023 State-of-the-art hydrogen generation techniques and storage methods: a critical review J. Energy Storage 64 107196
  501. IRENA 2022 Hydrogen International Renewable Energy Agency (available at: www.irena.org/Energy-Transition/ Technology/Hydrogen#:∼:text=Global%20 production%20stands%20at%20around,of%20a%20 mix%20of%20gases)
  502. Green Hydrogen Market 2022 A global and regional analysis (BIS Research) (available at: https://bisresearch.com/ industry-report/green-hydrogen-market.html?utm_term= green%20hydrogen%20market&utm_campaign=
  503. Ammonia+Crackers+Market+-+End+by+December,+ 2023&utm_source=adwords&utm_medium=ppc&hsa_ acc=3826481288&hsa_cam=20858378292&hsa_grp= 156369041029&hsa_ad=684666634685&hsa_src=g& hsa_tgt=kwd-1339386115891&hsa_kw=green%20 hydrogen%20market&hsa_mt=p&hsa_net=adwords& hsa_ver=3&gclid=EAIaIQobChMIreeU2eCEhAMVd NhMAh2bQwwOEAAYASAAEgKXwfD_BwE)
  504. Dervis Emre Demirocak 2017 Hydrogen storage technologies ed Y-P Chen et al Nanostructured Materials for Next-Generation Energy Storage and Conversion (Springer-Verlag GmbH Germany) ch 4 (https://doi.org/ 10.1007/978-3-662-53514-1_4)
  505. Usman M R 2022 Hydrogen storage methods: review and current status Renew. Sustain. Energy Rev. 167 112743
  506. Andersson J and Grönkvist S 2019 Large-scale storage of hydrogen Int. J. Hydrog. Energy 44 11901-19
  507. Wei D, Shi X, Qu R, Junge K, Junge H and Beller M 2022 Toward a hydrogen economy: development of heterogeneous catalysts for chemical hydrogen storage and release reactions ACS Energy Lett. 7 3734-52
  508. Banerjee A N, Min B-K and Joo S W 2013 Synthesis of metal-incorporated graphitic microporous carbon terminated with highly-ordered graphene walls-controlling the number of graphene layers by ambient-temperature metal sputtering Appl. Surf. Sci. 268 588-600
  509. Jain V and Kandasubramanian B 2020 Functionalized graphene materials for hydrogen storage J. Mater. Sci. 55 1865-903
  510. Osman A I, Mehta N, Elgarahy A M, Hefny M, Al-Hinai A, Al-Muhtaseb A H and Rooney D W 2022 Hydrogen production, storage, utilisation and environmental impacts: a review Environ. Chem. Lett. 20 153-88
  511. Ngqalakwezi A and Bevon Nkazi D 2021 Hydrogen Storage: Materials, Kinetics And Thermodynamics (IntechOpen) (https://doi.org/10.5772/intechopen.94300)
  512. Heinemann N et al 2021 Enabling large-scale hydrogen storage in porous media-the scientific challenges Energy Environ. Sci. 14 853
  513. Service R F 2023 Molecular 'sponges' could be hydrogen fuel tanks Science 381 1383
  514. Banerjee A N and Joo S W 2021 High hydrogen uptake by a metal-graphene-microporous carbon network Mater. Sci. Eng. B 271 115275
  515. Gerboni R 2016 Introduction to hydrogen transportation Compendium of Hydrogen Energy ch 11, pp 283-99
  516. Niermann M, Timmerberg S, Drünert S and Kaltschmitt M 2021 Liquid organic hydrogen carriers and alternatives for international transport of renewable hydrogen Renew. Sustain. Energy Rev. 135 110171
  517. Peters J F 2023 Best practices for life cycle assessment of batteries Nat. Sustain. 6 614-6
  518. Sala S, Amadei A M, Beylot A and Ardente F 2021 The evolution of life cycle assessment in European policies over three decades Int. J. Life Cycle Assess. 26 2295-314
  519. Life Cycle Initiative 2022 What is life cycle thinking# The United Nations Environment Programme, (UNEP) (available at: www.lifecycleinitiative.org/starting-life- cycle-thinking/what-is-life-cycle-thinking/)
  520. Soeteman-Hernández L G, Blanco C F, Koese M, Sips A J A M, Noorlander C W and Peijnenburg W J G M 2023 Life cycle thinking and safe-and-sustainable-by-design approaches for the battery innovation landscape iScience 26 106060
  521. Sankar T K, Abhilash and Meshram P 2024 Environmental Impact assessment in the entire life cycle of lithium-ion batteries Rev. Environ. Contam. 262 5
  522. Anil M and Rejikumar G 2023 Life Cycle analysis of lithium-ion batteries: an assessment of sustainability impact 2023 Int. Conf. for Advancement in Technology (ICONAT) (Goa, India) pp 1-5
  523. Peters J, Buchholz D, Passerini S and Weil M 2016 Life cycle assessment of sodium-ion batteries Energy Environ. Sci. 9 1744-51
  524. Manadade P, Weil M, Baumann M and Wei Z 2023 Environmental life cycle assessment of emerging solid-state batteries: a review Chem. Eng. J. Adv. 13 100439
  525. Tarroja B, Ogunseitan O and Kendall A 2024 Life cycle assessment of emerging battery systems Emerging Battery Technologies to Boost the Clean Energy Transition (The Materials Research Society Series) ed S Passerini, L Barelli, M Baumann, J Peters and M Weil (Springer)
  526. da Silva Lima L et al 2021 Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems Sustain. Energy Technol. Assess. 46 101286
  527. He H, Tian S, Tarroja B, Ogunseitan O A, Samuelsen S and Schoenung J M 2020 Flow battery production: materials selection and environmental impact J. Cleaner Prod. 269 121740
  528. Di Florio G, Pucher I, Todeschi P, Baratto M C, Basosi R and Busi E 2022 Assessment of semi-organic electrolytes for redox flow battery: life cycle assessment as a tool to steer industry toward green chemistry J. Cleaner Prod. 343 130899
  529. Granovskii M, Dincer I and Rosen M A 2006 Life cycle assessment of hydrogen fuel cell and gasoline vehicles Int. J. Hydrog. Energy 31 337-52
  530. Ahmed H, Adebayo P, Ahmed M and Arbab A I 2023 Life cycle assessment of hydrogen fuel cells: environmental impact and sustainability J. Energy Technol. Policy 13 57-67
  531. Kim M, Park J, Ju H, Kim J Y, Cho H-S, Kim C-H, Kim B-H and Lee S W 2021 Understanding synergistic metal-oxide interactions of in situ exsolved metal nanoparticles on a pyrochlore oxide support for enhanced water splitting Energy Environ. Sci. 14 3053-306
  532. Qin Q et al 2024 Tuning electronic structure of RuO 2 by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium J. Energy Chem. 88 94-102
  533. Au H, Crespo-Ribadeneyra M and Titirici M-M 2022 Beyond Li-ion batteries: performance, materials diversification, and sustainability One Earth 5 207-11
  534. Zhao Y, Pohl O, Bhatt A I, Collis G E, Mahon P J, Rüther T and Hollenkamp A F 2021 A review on battery market trends, second-life reuse, and recycling Sustain. Chem. 2 167-205