Academia.eduAcademia.edu

Outline

Desenvolvimento de Linked Data Mashups com o uso de LIDMS

Abstract

Semantic Web technologies like RDF model, URIs and SPARQL query language, can reduce the complexity of data integration by making use of properly established and described links between sources. However, the diculty to formulate distributed queries has been a challenge to harness the potential of these technologies due to autonomy, distribution and vocabulary of heterogeneous data sources. This scenario demands eective mechanisms for integrating data on Linked Data. Linked Data Mashups allow users to query and integrate structured and linked data on the web. This work proposes an architecture of Linked Data Mashups based on the use of Linked Data Mashup Services (LIDMS). A module for ecient execution of federated query plans on Linked Data has been developed and is a component of the proposed architecture. The results of experiments using the execution module were more ecient than other existing strategies. Furthermore, a LIDMS execution Web environment also has been dened and implemented as contribution of this work. Resumo. Tecnologias da Web Semântica como modelo RDF, URIs e linguagem de consulta SPARQL, podem reduzir a complexidade de integração de dados ao fazer uso de ligações corretamente estabelecidas e descritas entre fontes. No entanto, a diculdade para formulação de consultas distribuídas tem sido um obstáculo para aproveitar o potencial dessas tecnologias em virtude da autonomia, distribuição e vocabulário heterogêneo das fontes de dados. Esse cenário demanda mecanismos ecientes para integração de dados sobre Linked Data. Linked Data Mashups permitem aos usuários executar consultas e integrar dados estruturados e vinculados na web. O presente trabalho propõe uma arquitetura de Linked Data Mashups baseada no uso de Linked Data Mashup Services (LIDMS). Um módulo para execução eciente de planos de consulta federados sobre Linked Data foi desenvolvido e é um componente da arquitetura proposta. Os resultados de experimentos realizados com o uso do módulo de execução mostraram-se mais ecientes que outras estratégias existentes. Além disso, um ambiente Web para execução de LIDMS também foi denido e implementado como contribuição deste trabalho.

References (16)

  1. Beckett, D. and Broekstra, J. SPARQL Query Results XML Format. http://www.w3.org/TR/ rdf-sparql-XMLres/, 2008.
  2. Bizer, C. and Schultz, A. The R2R Framework: Publishing and Discovering Mappings on the Web. In First International Workshop on Consuming Linked Data (COLD2010), 2010.
  3. Clark, K. G., Feigenbaum, L., and Torres, E. Serializing SPARQL Query Results in JSON. http://www.w3.org/ TR/rdf-sparql-json-res/, 2008.
  4. Fielding, R. Architectural Styles and the Design of Network-based Software Architectures. Ph.D. thesis, University of California, Irvine, 2000.
  5. Graefe, G. Encapsulation of parallelism in the volcano query processing system. In Proceedings of the 1990 ACM SIGMOD international conference on Management of data. SIGMOD '90. ACM, New York, NY, USA, pp. 102111, 1990.
  6. Heath, T. and Bizer, C. Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool, 2011.
  7. Jarrar, M. and Dikaiakos, M. D. A Query Formulation Language for the Data Web. IEEE Transactions on Knowledge and Data Engineering , 2010.
  8. Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., and Morbidoni, C. Rapid prototyping of semantic mash-ups through semantic web pipes. In Proceedings of the 18th international conference on World wide web -WWW '09. ACM Press, pp. 581590, 2009.
  9. Madhavan, J., Jeffery, S. R., Cohen, S., (luna Dong, X., Ko, D., Yu, C., Halevy, A., and Inc, G. Web-scale data integration: You can only aord to pay as you go. In Proceedings of the Third Biennial Conference on Innovative Data Systems Research, 2007.
  10. Magalhães, R. P. Um Ambiente para Processamento de Consultas Federadas em Linked Data Mashups. M.S. thesis, Universidade Federal do Ceará, 2012.
  11. Porto, F., Tajmouati, O., Da Silva, V. F. V., Schulze, B., and Ayres, F. V. M. Qef -supporting complex query applications. In Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid. CCGRID '07. IEEE Computer Society, Washington, DC, USA, pp. 846851, 2007.
  12. Prud'hommeaux, E. and Buil-Aranda, C. SPARQL 1.1 Federated Query. http://www.w3.org/TR/ sparql11-federated-query/, 2011.
  13. Schwarte, A., Haase, P., Hose, K., Schenkel, R., and Schmidt, M. Fedx: a federation layer for distributed query processing on linked open data. In Proceedings of the 8th extended semantic web conference on The semanic web: research and applications -Volume Part II. ESWC'11. Springer-Verlag, Berlin, Heidelberg, pp. 481486, 2011a.
  14. Schwarte, A., Haase, P., Hose, K., Schenkel, R., and Schmidt, M. Fedx: optimization techniques for federated query processing on linked data. In Proceedings of the 10th international conference on The semantic web -Volume Part I. ISWC'11. Springer-Verlag, Berlin, Heidelberg, pp. 601616, 2011b.
  15. Vidal, V. M. P., de Macêdo, J. A. F., Pinheiro, J. C., Casanova, M. A., and Porto, F. Query Processing in a Mediator Based Framework for Linked Data Integration. IJBDCN 7 (2): 2947, 2011.
  16. Yu, J., Benatallah, B., Casati, F., and Daniel, F. Understanding mashup development. IEEE Internet Compu- ting vol. 12, pp. 4452, 2008.