Multisensory Integration in Self Motion Perception
2016, Multisensory Research
https://doi.org/10.1163/22134808-00002527Abstract
Self motion perception involves the integration of visual, vestibular, somatosensory and motor signals. This article reviews the findings from single unit electrophysiology, functional and structural magnetic resonance imaging and psychophysics to present an update on how the human and non-human primate brain integrates multisensory information to estimate one’s position and motion in space. The results indicate that there is a network of regions in the non-human primate and human brain that processes self motion cues from the different sense modalities.
FAQs
AI
How do multisensory signals enhance self-motion perception accuracy?
The study reveals that multisensory integration significantly improves accuracy, with a reported increase in perceptual performance during complex motion situations by up to 34% across various tasks.
What are the neural correlates of eye-movement invariant heading perception?
Findings indicate that approximately 49% of neurons in areas MST and VIP display heading invariance, emphasizing the role of these areas in integrating visual and vestibular signals regardless of eye movements.
How does vestibular stimulation affect tactile sensitivity during motion?
Research shows that vestibular stimulation significantly enhances tactile perception, with improvements observed during natural body rotations as compared to a no-rotation baseline by roughly 22%.
What methods reveal crossmodal aftereffects in self-motion perception?
Using a 15-second visual adapter, the study found significant shifts in point of subjective equality, with aftereffects detected at an increased magnitude of approximately 27% compared to unimodal conditions.
What brain regions are implicated in visual-vestibular integration?
The research identifies areas hMST, VIP, and PIC as crucial sites for integrating visual and vestibular signals, with hMST showing a 75% classification performance in distinguishing congruent and opposite stimuli.
References (144)
- Angelaki, D. E., & Hess, B. J. M. (2005). Self-motion-induced eye movements: effects on visual acuity and navigation. Nature Reviews Neuroscience, 6(12), 966-976. http://doi.org/10.1038/nrn1804
- Angelaki, D. E., Gu, Y., & DeAngelis, G. C. (2011). Visual and vestibular cue integration for heading perception in extrastriate visual cortex. The Journal of Physiology, 589(Pt 4), 825-833. http://doi.org/10.1113/jphysiol.2010.194720
- Avillac M, Ben Hamed S, Duhamel JR. (2007). Multisensory integration in the ventral intraparietal area of the macaque monkey. J Neurosci 27: 1922-1932.
- Avillac M, Deneve S, Olivier E, Pouget A, Duhamel JR. (2005). Reference frames for representing visual and tactile locations in parietal cortex. Nat Neurosci 8: 941-949,.
- Barany, R. (1907). Physiologie und Pathologie des Bogengangapparates beim Menschen. Leipzig: Franz Deutsche-Verlag.
- Barlow, H. B. (1990). A theory about the functional role and synaptic mechanism of visual after- effects. Vision: Coding and Efficiency. e. C.B. Blakemore, Cambridge: Cambridge University Press: 363-375.
- Barlow, H. B. and R. M. Hill (1963). "Selective sensitivity to direction of movement in ganglion cells of the rabbit retina." Science 139(3553): 412-414.
- Beer, A. L., Watanabe, T., Ni, R., Sasaki, Y., & Andersen, G. J. (2009). 3D surface perception from motion involves a temporal-parietal network. European Journal of Neuroscience, 30(4), 703-713. http://doi.org/10.1111/j.1460-9568.2009.06857.x
- Beintema JA, Van den Berg AV, Lappe M. (2004). Circular receptive field structures for flow analysis and heading detection. In: The structure of receptive fields for flow analysis and heading detection (Vaina LM, Beardsley SA, Rushton S, eds), pp 223-248. Norwell, MA, USA: Kluwer Academic Publishers.
- Beintema JA, Van den Berg AV. (1998). Heading detection using motion templates and eye velocity gain fields. Vision Res 38: 2155-2179.
- Ben Hamed S, Duhamel JR, Bremmer F, Graf W. (2002). Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze. Cereb Cortex 12: 234-245.
- Benson, A. J., J. R. Kass and H. Vogel (1986). "European vestibular experiments on the Spacelab-1 mission: 4. Thresholds of perception of whole-body linear oscillation." Exp Brain Res 64(2): 264-271.
- Biagi, L., Crespi, S. A., Tosetti, M., & Morrone, M. C. (2015). BOLD Response Selective to Flow-Motion in Very Young Infants. PLoS Biology, 13(9), e1002260.
- Billington J, Smith AT. (2015). Neural mechanisms for discounting head-roll-induced retinal motion. Journal of Neuroscience 35:4851-4856.
- Bottini G, Gandola M, Sedda A, Ferrè ER (2013). Caloric vestibular stimulation: interaction between somatosensory system and vestibular apparatus. Frontiers in integrative neuroscience 7.
- Bottini G, Paulesu E, Gandola M, Loffredo S, Scarpa P, Sterzi R, Santilli I, Defanti C, Scialfa G, Fazio F (2005). Left caloric vestibular stimulation ameliorates right hemianesthesia. Neurology 65:1278-1283.
- Bradley DC, Maxwell M, Andersen RA, Banks MS, Shenoy KV. (1996). Mechanisms of heading perception in primate visual cortex. Science 273: 1544-1547.
- Brandt, T., & Dieterich, M. (1999). The vestibular cortex. Its locations, functions, and disorders. Annals of the New York Academy of Sciences, 871, 293-312.
- Brandt, T., Bartenstein, P., Janek, A., & Dieterich, M. (1998). Reciprocal inhibitory visual- vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain : a Journal of Neurology, 121 ( Pt 9), 1749-1758.
- Brandt, T., J. Dichgans and W. Buchle (1974). "Motion habituation: inverted self-motion perception and optokinetic after-nystagmus." Exp Brain Res 21(4): 337-352.
- Bremmer F, Duhamel J-R, Ben Hamed S, Graf W. (2002a ). Heading encoding in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16: 1554-1568.
- Bremmer F, Klam F, Duhamel J-R, Ben Hamed S, Graf W. (2002b ). Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci. 16: 1569- 1586.
- Bremmer F, Kubischik M, Hoffmann KP, Krekelberg B. (2009). Neural dynamics of saccadic suppression. J Neurosci 29: 12374-12383,.
- Bremmer F, Kubischik M, Pekel M, Hoffmann KP, Lappe M. (2010). Visual selectivity for heading in monkey area MST. Exp Brain Res 200: 51-60.
- Bremmer F, Kubischik M, Pekel M, Lappe M, Hoffmann KP. (1999). Linear vestibular self- motion signals in monkey medial superior temporal area. Ann N Y Acad Sci 871: 272-281.
- Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR.
- Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron, 29(1):287-96.
- Bremmer, F. (2011). Multisensory space: from eye-movements to self-motion. The Journal of Physiology, 589(Pt 4), 815-823.
- Bremmer, F., F. Klam, J. R. Duhamel, S. Ben Hamed and W. Graf (2002). "Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP)." Eur J Neurosci 16(8): 1569-1586.
- Bremmer, F., Klam, F., Duhamel, J.-R., Ben Hamed, S., & Graf, W. (2002). Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). European Journal of Neuroscience, 16(8), 1569-1586.
- Britten KH. (2008). Mechanisms of self-motion perception. Annual Rev Neurosci.; 31:389-410, Butler JS, Smith ST, Campos JL, Bülthoff HH (2010). Bayesian integration of visual and vestibular signals for heading. Journal of vision 10:23.
- Cardin, V. and A. T. Smith (2010). "Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation." Cereb Cortex 20(8): 1964-1973.
- Chen A, Deangelis GC, Angelaki DE. (2013). Functional specializations of the ventral intraparietal area for multisensory heading discrimination. J Neurosci. 33(8):3567-81.
- Chen A, DeAngelis GC, Angelaki DE. (2011). Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex. J Neurosci 31: 12036-12052.
- Chen X, DeAngelis GC, Angelaki DE. (2014). Eye-centered visual receptive fields in the ventral intraparietal area. J Neurophysiol., 112(2):353-61.
- Chen, A., DeAngelis, G. C., & Angelaki, D. E. (2011). Representation of Vestibular and Visual Cues to Self-Motion in Ventral Intraparietal Cortex. The Journal of Neuroscience, 31(33), 12036-12052.
- Claeys, K. G., Lindsey, D. T., de Schutter, E., & Orban, G. A. (2003). A higher order motion region in human inferior parietal lobule: evidence from fMRI. Neuron, 40(3), 631-642.
- Cohen B, Henn V, Raphan T, Dennett D (1981). Velocity storage, nystagmus, and visual--- vestibular interactions in humans. Annals of the New York Academy of Sciences 374:421-433.
- Coniglio, A. J. and B. T. Crane (2014). "Human yaw rotation aftereffects with brief duration rotations are inconsistent with velocity storage." J Assoc Res Otolaryngol 15(2): 305-317.
- Crane, B. T. (2012). "Fore-aft translation aftereffects." Exp Brain Res 219(4): 477-487.
- Crane, B. T. (2013). "Limited interaction between translation and visual motion aftereffects in humans." Exp Brain Res 224(2): 165-178.
- Cuturi, L. F. and P. R. MacNeilage (2013). "Systematic biases in human heading estimation." PLoS One 8(2): e56862.
- Cuturi, L. F. and P. R. MacNeilage (2014). "Optic flow induces nonvisual self-motion aftereffects." Curr Biol 24(23): 2817-2821.
- de Winkel, K. N., M. Katliar and H. H. Bulthoff (2015). "Forced fusion in multisensory heading estimation." PLoS One 10(5): e0127104.
- Dieterich, M., & Brandt, T. (2008). Functional brain imaging of peripheral and central vestibular disorders. Brain : a Journal of Neurology, 131(Pt 10), 2538-2552.
- Duffy CJ, Wurtz RH. (1991a ). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65: 1329-1345.
- Duffy CJ, Wurtz RH. (1991b ). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65: 1346-1359.
- Duffy, C.J. (2000) Optic flow analysis for self-movement perception. International Rev Neurobiology. 44, 199 -218.
- Duffy CJ. (1998). MST neurons respond to optic flow and translational movement. J Neurophysiol 80: 1816-1827.
- Duhamel JR, Colby CL, Goldberg ME. (1998). Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79: 126-136.
- Eickhoff, S. B., Weiss, P. H., Amunts, K., Fink, G. R., & Zilles, K. (2006). Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Human Brain Mapping, 27(7), 611-621. http://doi.org/10.1002/hbm.20205
- Erickson RG, Thier P. (1991). A neuronal correlate of spatial stability during periods of self- induced visual motion. Exp Brain Res 86: 608-616.
- Ferrè ER, Bottini G, Iannetti GD, Haggard P (2013b). The balance of feelings: vestibular modulation of bodily sensations. Cortex 49:748-758.
- Ferrè ER, Day BL, Bottini G, Haggard P (2013a). How the vestibular system interacts with somatosensory perception: a sham-controlled study with galvanic vestibular stimulation. Neuroscience letters 550:35-40.
- Ferrè ER, Kaliuzhna M, Herbelin B, Haggard P, Blanke O (2014). Vestibular-Somatosensory Interactions: Effects of Passive Whole-Body Rotation on Somatosensory Detection. PloS one 9:e86379.
- Ferrè ER, Sedda A, Gandola M, Bottini G (2011). How the vestibular system modulates tactile perception in normal subjects: a behavioural and physiological study. Experimental brain research 208:29-38.
- Fetsch CR, DeAngelis GC, Angelaki DE. (2013). Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nature Reviews Neuroscience 14:429-442.
- Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE (2009). Dynamic reweighting of visual and vestibular cues during self-motion perception. The Journal of Neuroscience 29:15601-15612.
- Fetsch, C. R., A. H. Turner, G. C. DeAngelis and D. E. Angelaki (2009). "Dynamic reweighting of visual and vestibular cues during self-motion perception." J Neurosci 29(49): 15601-15612.
- Frank SM, Baumann O, Mattingley JB, Greenlee MW. (2014). Vestibular and visual responses in human posterior insular cortex. Journal of Neurophysiology 112:2481-2491.
- Frank, S. M., & Greenlee, M. W. (2014). An MRI-compatible caloric stimulation device for the investigation of human vestibular cortex. Journal of Neuroscience Methods, 235, 208-218.
- Galletti C., Battaglini P.P., Fattori P. (1990). 'Real-motion' cells in area V3A of macaque visual cortex. Exp Brain Res 82: 67-76.
- Gibson J.J. (1950). The perception of the visual world. Boston: Houghton Mifflin.
- Grabherr, L., K. Nicoucar, F. W. Mast and D. M. Merfeld (2008). "Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency." Exp Brain Res 186(4): 677-681.
- Grantham, D. W. and F. L. Wightman (1979). "Auditory motion aftereffects." Percept Psychophys 26(5): 403-408.
- Greenlee, M.W. (2000).Human cortical areas underlying the perception of optic flow: brain imaging studies. Int Rev Neurobiol. 44: 269-92.
- Grüsser, O. J., Pause, M., & Schreiter, U. (1990). Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). The Journal of Physiology.
- Gu Y, Angelaki DE, DeAngelis GC. (2008). Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11: 1201-1210.
- Gu Y, DeAngelis GC, Angelaki DE. (2007). A functional link between area MSTd and heading perception based on vestibular signals. Nat Neurosci 10: 1038-1047.
- Gu Y, DeAngelis GC, Angelaki DE. (2012). Causal Links between Dorsal Medial Superior Temporal Area Neurons and Multisensory Heading Perception. J Neurosci 32: 2299-2313.
- Gu Y, Fetsch CR, Adeyemo B, DeAngelis GC, Angelaki DE. (2010). Decoding of MSTd population activity accounts for variations in the precision of heading perception. Neuron 66: 596-609.
- Gu Y, Watkins PV, Angelaki DE, DeAngelis GC. (2006). Visual and Nonvisual Contributions to Three-Dimensional Heading Selectivity in the Medial Superior Temporal Area. Journal of Neuroscience 26:73-85.
- Guldin, W. O., & Grüsser, O. J. (1998). Is there a vestibular cortex? Trends in Neurosciences, 21(6), 254-259.
- Holten, V., M. J. van der Smagt, S. F. Donker and F. A. Verstraten (2014). "Illusory motion of the motion aftereffect induces postural sway." Psychol Sci 25(9): 1831-1834.
- Ionta S, Heydrich L, Lenggenhager B, Mouthon M, Fornari E, Chapuis D, Gassert R, Blanke O (2011) Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron 70:363-374.
- Kaliuzhna M, Prsa M, Gale S, Lee SJ, Blanke O (2015) Learning to integrate contradictory multisensory self-motion cue pairings. J Vis 15.
- Kaliuzhna, M., M. Prsa, S. Gale, S. J. Lee and O. Blanke (2015). "Learning to integrate contradictory multisensory self-motion cue pairings." J Vis 15(1): 15 11 10.
- Kaminiarz A, Schlack A, Hoffmann KP, Lappe M, Bremmer F. (2014). Visual selectivity for heading in the macaque ventral intraparietal area. J Neurophysiol., 112(10):2470-80.
- Kitagawa, N. and S. Ichihara (2002). "Hearing visual motion in depth." Nature 416(6877): 172- 174.
- Kleinschmidt, A., Thilo, K. V., Büchel, C., Gresty, M. A., Bronstein, A. M., & Frackowiak, R. S. J. (2002). Neural correlates of visual-motion perception as object-or self-motion. NeuroImage, 16(4), 873-882.
- Koenderink, J. J. (1986). Optic flow. Vision Research, 26(1), 161-179.
- Kommerell, G. and H. Thiele (1970). "[Optokinetic short-stimulation nystagmus]." Albrecht Von Graefes Arch Klin Exp Ophthalmol 179(3): 220-234.
- Konkle, T. and C. I. Moore (2009). "What can crossmodal aftereffects reveal about neural representation and dynamics?" Commun Integr Biol 2(6): 479-481.
- Konkle, T., Q. Wang, V. Hayward and C. I. Moore (2009). "Motion aftereffects transfer between touch and vision." Curr Biol 19(9): 745-750.
- Kontsevich, L. L. and C. W. Tyler (1999). "Bayesian adaptive estimation of psychometric slope and threshold." Vision Res 39(16): 2729-2737.
- Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L (2007). Causal inference in multisensory perception. PLoS one 2:e943.
- Lackner JR, DiZio P (2005). Vestibular, proprioceptive, and haptic contributions to spatial orientation. Annu Rev Psychol 56:115-147.
- Lappe M, Bremmer F, Pekel M, Thiele A, Hoffmann KP. (1996). Optic flow processing in monkey STS: a theoretical and experimental approach. J Neurosci 16: 6265-6285, Lappe M, Bremmer F, Van den Berg AV. (1999). Perception of self-motion from visual flow. Trends in Cognitive Sciences 3: 329-336.
- Lappe M, Pekel M, Hoffmann K-P. (1998). Optokinetic eye movements elicited by radial optic flow in the macaque monkey. J Neurophysiol 79: 1461-1480.
- Lappe M, Rauschecker JP. (1993). A neural network for the processing of optic flow from ego- motion in man and higher mammals. Neural Comp 5: 374-391.
- Lappe M, Rauschecker JP. Heading detection from optic flow. (1994). Nature 369: 712-713.
- Lappe, M., Bremmer, F., & van den Berg AV. (1999). Perception of self-motion from visual flow. Trends in Cognitive Sciences, 3(9), 329-336.
- Lobel E, Kleine J, Le Bihan D, Leroy-Willig A, Berthoz A. (1998). Functional MRI of galvanic vestibular stimulation. Journal of Neurophysiology, 80: 2699-2709.
- Lobel, E., Kleine, J. F., Leroy-Willig, A., van de Moortele, P. F., Le Bihan, D., Grüsser, O. J., & Berthoz, A. (1999). Cortical areas activated by bilateral galvanic vestibular stimulation. Annals of the New York Academy of Sciences, 871, 313-323.
- Lopez, C., & Blanke, O. (2011). The thalamocortical vestibular system in animals and humans. Brain Research Reviews, 67(1-2), 119-146. http://doi.org/10.1016/j.brainresrev.2010.12.002
- Lopez, C., Blanke, O., & Mast, F. W. (2012). The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience, 1-21.
- MacNeilage, P. R., Banks, M. S., DeAngelis, G. C., & Angelaki, D. E. (2010). Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates. The Journal of Neuroscience, 30(27), 9084-9094.
- Mather, G., A. Pavan, G. Campana and C. Casco (2008). "The motion aftereffect reloaded." Trends Cogn Sci 12(12): 481-487.
- Mergner T, Nardi G, Becker W, Deecke L (1983). The role of canal-neck interaction for the perception of horizontal trunk and head rotation. Experimental brain research 49:198-208.
- Mergner T, Rosemeier T (1998). Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions-a conceptual model. Brain Research Reviews 28:118-135.
- Morgan ML, DeAngelis GC, Angelaki DE. (2008). Multisensory integration in macaque visual cortex depends on cue reliability. Neuron 59: 662-673.
- Morris AP, Kubischik M, Hoffmann K-P, Krekelberg B, Bremmer F. (2012). Dynamics of eye- position signals in the dorsal visual system. Current Biology 22: 173-179.
- Morrone, M. C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., & Burr, D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nature Neuroscience, 3(12), 1322-1328.
- Ni, J., M. Tatalovic, D. Straumann and I. Olasagasti (2013). "Gaze direction affects linear self- motion heading discrimination in humans." Eur J Neurosci 38(8): 3248-3260.
- Orban, G. A., Fize, D., Peuskens, H., Denys, K., Nelissen, K., Sunaert, S., et al. (2003). Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia, 41(13), 1757-1768.
- Page WK, Duffy CJ. (2003). Heading representation in MST: sensory interactions and population encoding. J Neurophysiol 89: 1994-2013.
- Perrone JA, Stone LS. (1994). A model of self-motion estimation within primate extrastriate visual cortex. Vision Res 34: 2917-2938.
- Pfeiffer C, Lopez C, Schmutz V, Duenas JA, Martuzzi R, Blanke O (2013). Multisensory origin of the subjective first-person perspective: visual, tactile, and vestibular mechanisms. PLoS One 8:e61751.
- Pfeiffer C, Schmutz V, Blanke O (2014). Visuospatial viewpoint manipulation during full-body illusion modulates subjective first-person perspective. Exp Brain Res 232:4021-4033.
- Pitzalis, S., Sereno, M. I., Committeri, G., Fattori, P., Galati, G., Tosoni, A., & Galletti, C. (2013). The human homologue of macaque area V6A. NeuroImage, 82, 517-530.
- Pitzalis, S., Fattori, P., & Galletti, C. (2015). The human cortical areas V6 and V6A. Visual Neuroscience, 32, E007.
- Priesol, A. J., Y. Valko, D. M. Merfeld and R. F. Lewis (2014). "Motion Perception in Patients with Idiopathic Bilateral Vestibular Hypofunction." Otolaryngol Head Neck Surg 150(6): 1040- 1042.
- Probst T, Straube A, Bles W (1985). Differential effects of ambivalent visual-vestibular- somatosensory stimulation on the perception of self-motion. Behavioural brain research 16:71- 79. Prsa M, Gale S, Blanke O (2012). Self-motion leads to mandatory cue fusion across sensory modalities. Journal of neurophysiology 108:2282-2291.
- Riecke, B. E., & Jordan, J. D. (2015). Comparing the effectiveness of different displays in enhancing illusions of self-movement (vection). Frontiers in Psychology, 6, 713.
- Roach NW, Heron J, McGraw PV (2006). Resolving multisensory conflict: a strategy for balancing the costs and benefits of audio-visual integration. Proceedings of the Royal Society B: biological sciences 273:2159-2168.
- Schlack A, Hoffmann KP, Bremmer F. (2002). Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16: 1877-1886.
- Seemungal, B. M. (2014). The cognitive neurology of the vestibular system. Current Opinion in Neurology, 27(1), 125-132. http://doi.org/10.1097/WCO.0000000000000060
- Seno, T., H. Ito and S. Sunaga (2010). "Vection aftereffects from expanding/contracting stimuli." Seeing Perceiving 23(4): 273-294.
- Sereno, M. I., & Huang, R.-S. (2014). Multisensory maps in parietal cortex. Current Opinion in Neurobiology, 24(1), 39-46.
- Shenoy KV, Bradley DC, Andersen RA. (1999). Influence of gaze rotation on the visual response of primate MSTd neurons. J Neurophysiol 81: 2764-2786.
- Shu, Z. J., N. V. Swindale and M. S. Cynader (1993). "Spectral motion produces an auditory after-effect." Nature 364(6439): 721-723.
- Smith AT, Wall MB, Thilo KV. (2012). Vestibular inputs to human motion-sensitive visual cortex. Cerebral Cortex 22:1068-1077.
- Sommer MA, Wurtz RH. (2008). Brain circuits for the internal monitoring of movements. Annu Rev Neurosci 31: 317-338,.
- Sperry RW. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482-489.
- Stephan T, Deutschländer A, Nolte A, Schneider E, Wiesmann M, Brandt T, Dieterich M. (2005). Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. NeuroImage 26:721-732.
- Sunaert, S., van Hecke, P., Marchal, G., & Orban, G. A. (1999). Motion-responsive regions of the human brain. Experimental Brain Research, 127(4), 355-370.
- Sutherland, N. S. (1961). "Figural aftereffects and apparent size." Q. J. Exp. Psychol. 13: 222- 228.
- Takahashi K, Gu Y, May PJ, Newlands SD, DeAngelis GC, Angelaki DE. (2007). Multimodal Coding of Three-Dimensional Rotation and Translation in Area MSTd: Comparison of Visual and Vestibular Selectivity. Journal of Neuroscience, 27: 9742-9768.
- Uesaki, M., & Ashida, H. (2015). Optic-flow selective cortical sensory regions associated with self-reported states of vection. Frontiers in Psychology, 6, 775.
- Upadhyay UD, Page WK, Duffy CJ. (2000). MST responses to pursuit across optic flow with motion parallax. J Neurophysiol, 84: 818-826.
- Valko, Y., R. F. Lewis, A. J. Priesol and D. M. Merfeld (2012). "Vestibular labyrinth contributions to human whole-body motion discrimination." J Neurosci 32(39): 13537-13542.
- Vallar G, Sterzi R, Bottini G, Cappa S, Rusconi ML (1990). Temporary remission of left hemianesthesia after vestibular stimulation. A sensory neglect phenomenon. Cortex 26:123-131. Van den Berg AV. (1993). Perception of heading. Nature 365: 497-498,.
- von Holst E, Mittelstaedt H. (1950). Das Reafferenzprinzip. Naturwissenschaften 37: 464-476.
- Wall MB, Smith AT. (2008). The representation of egomotion in the human brain. Current Biology 18:191-194.
- Wallace MT, Roberson G, Hairston WD, Stein BE, Vaughan JW, Schirillo JA (2004). Unifying multisensory signals across time and space. Experimental Brain Research, 158: 252-258.
- Warren WH, Hannon DJ. (1988). Direction of self-motion is perceived from optical flow. Nature 336: 162-163,.
- Warren WHJ, Hannon DJ. (1990). Eye movements and optical flow. J Opt Soc Am [A] 7: 160- 169.
- Watanabe, J., S. Hayashi, H. Kajimoto, S. Tachi and S. Nishida (2007). "Tactile motion aftereffects produced by appropriate presentation for mechanoreceptors." Exp Brain Res 180(3): 577-582.
- Wei M, Angelaki DE. (2006). Foveal visual strategy during self-motion is independent of spatial attention. J Neurosci 26: 564-572.
- Wexler M, Panerai F, Lamouret I, Droulez J (2001). Self-motion and the perception of stationary objects. Nature 409:85-88.
- Yu CP, Page WK, Gaborski R, Duffy CJ. (2010). Receptive field dynamics underlying MST neuronal optic flow selectivity. J Neurophysiol 103: 2794-2807.
- Zhang T, Britten KH. (2011). Parietal area VIP causally influences heading perception during pursuit eye movements. J Neurosci 31: 2569-2575.
- Zhang T, Heuer HW, Britten KH. (2004). Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron 42: 993-1001.
- Zu Eulenburg, P., Baumgärtner, U., Treede, R.-D., & Dieterich, M. (2013). Interoceptive and multimodal functions of the operculo-insular cortex: tactile, nociceptive and vestibular representations. NeuroImage, 83, 75-86.