Petri net control of a kanban loop
2011
Abstract
Just in Time (JIT) is a management philosophy that favorates improvement through inventory reduction by producing only the right quantity at the right time. A kanban system is an important element of JIT philosophy. However, whereas kanban system is suitable when demand is stable, it should to be adjusted when demand is a significantly variable to be efficient. In addition, some works have proved that Petri nets are useful to model a kanban loop. Then, the objective of the present work is to exploit the analytical relation of Petri net models in order to improve the control of kanban system by using the real data provided by the system or by the product. This approach is based on the use of a continuous approximation of a discrete Petri net model in order to exploit a strategy of command based on gradient descent. In the present paper, two continuous approximations are proposed and compared.
References (30)
- Amrah, A., N. Zerhouni and A. El Moudni. Constrained State Feedback Control of a Class of Discrete Event Systems Modelled by Continuous Petri Nets. ICARV'96, Singapore, 979-984, 1996.
- Beranger, P. Les Nouvelles Règles de la Production, Dunod Ed., Paris, 1987.
- Bohez, E.L.J. A new Generic Timed Petri Net Model for Design and Performance Analysis of a Dual Kanban FMS. International Journal of Production Research, 42(4):719-740, 2004.
- Brams, G.W. Réseaux de Petri, Vol I et II, Masson, Paris, 1983.
- Brauer, W., W. Reisig and G. Rosenberg. Petri Nets: Central Models and their Properties. Lecture Notes in Computer Science, 254, 1986.
- Cassandras, C.G. Discret Event Systems: Modeling and Performance Analysis, Asken Ass. Inc. Pub, 1993.
- David, R. and H. Alla. Petri Nets and Grafcet -Tools for Modelling Discrete Events Systems, Prentice Hall, London, 1992.
- Desrochers, A. and M. Pia Fanti. A Supply Chain Model Using Complex-Valued Token Petri Nets. Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, 3709-3714, 2005.
- Di Mascolo, M., Y. Frein, Y. Dallery and R. David. A Unified Modeling of Kanban Systems Using Petri Nets. The International Journal of Flexible Manufacturing Systems, 3:275-307, 1991.
- Ghabri, M. Sur la Modélisation et la Commande des Systèmes Flexibles de Production. Thèse de Doctorat, INPG, Grenoble, France, 1995.
- Giua, A., A. Piccaluga and C. Seatzu. Firing Rate Optimization of Cyclic Event Graphs by Token Allocations. Automatica, 38:91-103, 2002.
- Hanzalek, Z. Continuous Petri Nets and Polytopes. IEEE-SMC'03, Washington, USA, 1513-1520, 2003.
- Jain, A., P.K. Jain and I.P.Singh. Performance Modelling of FMS with Flexible Process Plans -A Petri Net Approach. International Journal of Simulation Modelling, 5(3):101-113, 2006.
- Lefebvre, D. and P. Thomas. Identification par phase des fréquences maximales de franchissement dans les réseaux de Pétri continus à vitesse variable. CIMASI'02, Casablanca, Maroc, 2002.
- Lefebvre, D., E. Leclercq, F. Druaux and P. Thomas. Source and sink transitions controllers for continuous Petri nets: a gradient -based approach. ADHS'03, Saint Malo, France, 2003.
- Lefebvre, D., E. Leclercq, F. Druaux and P. Thomas. Commande des flux dans les réseaux de Petri continus par propagation du gradient. CIFA'04, Douz, Tunisie, 2004.
- Lefebvre, D. and P. Thomas. Parameters estimation for timed and continuous Petri nets: application to the identification and monitoring of hybrid systems. Cybernetics and Systems, 36(3):217-250, 2005.
- Mohanty, R.P., S. Kumar and M.K. Tiwari. Expert Enhanced Coloured Fuzzy Petri Net Models of Traditional, Flexible and Reconfigurable Kanban System. Prod. Planning and Control, 14(5):459-477, 2003.
- Moore, K.E. and S. M. Gupta. Stochastic Coloured Petri Net (SCPN) Models of Traditional and Flexible Kanban Systems. International Journal of Production Research, 37(9):2135-2158, 1999.
- Murata, T. Petri Nets: Properties, Analysis and Application. Proceedings IEEE, 77(4):541-580, 1989.
- Nakashima, K. and S.M. Gupta. Performance Evaluation of a Supplier Management System with Stochastic Variability. International Journal Manufacturing Technology and Management, 5(1/2):28-37, 2003.
- Panayiotou, C.G. and C.G. Cassandras. Optimization of Kanban-based Manufacturing Systems. Automatica, 35:1521-1533, 1999.
- Ramchandani, C. Analysis of Asynchronous Concurrent Systems by Timed Petri nets. PhD Thesis, MIT, USA, 1973.
- Seeluangsawat, R. and E.L.J. Bohez. Integration of JIT Flexible Manufacturing, Assembly and Disassembly System using Petri Net Approach. Journal of Manufacturing Technology Management, 15(7):700-714, 2004.
- Shahabudeen, P. and G.D. Sivakumar. Algorithm for the Design of Single-stage Adaptive Kanban System. Computers & Industrial Engineering, 54:800-820, 2007.
- Silva, M. and L. Recalde. On Fluidification of Petri Nets: from Discrete to Hybrid and Continuous models. IFAC-ADHS'03, Saint Malo, France, 9-20, 2003.
- Sugimori, Y., K. Kusunoki, F. Cho and S. Uchikawa. Toyota Production System Materialization of Just-in- time and Respect-for-human System. International Journal of Production Research, 15(6):553-564, 1977.
- Tardif, V. and L. Maaseidvaag. An Adaptive Approach to Controlling Kanban Systems. European Journal of Operation Research, 132:411-424, 2001.
- Ullah, H. and E.L.J. Bohez. A Petri Net Model for Sequence Optimization and Performance Analysis of Flexible Assembly Systems. Journal of Manufacturing Technology Management, 19(8):985-1003, 2008.
- Zaytoon, J., (ed.). Hybrid dynamical Systems. Journal Européen des Systèmes Automatisés, 32 :9-10, 1998.