Academia.eduAcademia.edu

Outline

Analysis of Energy Potential of Switchgrass Biomass

2024, Biomass

https://doi.org/10.3390/BIOMASS4030041

Abstract

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY

References (34)

  1. Samson, R.; Mani, S.; Boddey, R.; Sokhansanj, S.; Quesada, D.; Urquiaga, S.; Reis, V.; Lem, C.H. The potential of C4 perennial grasses for developing a global bioheat industry. Crit. Rev. Plant Sci. 2005, 24, 461-495. [CrossRef]
  2. Ibitoye, S.E.; Mahamood, R.M.; Jen, T.C.; Loha, C.; Akinlabi, E.T. An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties. J. Bioresour. Bioprod. 2023, 8, 333-360. [CrossRef]
  3. Schmer, M.R.; Vogel, K.P.; Mitchell, R.B.; Perrin, R.R. Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. USA 2008, 105, 464-469. [CrossRef]
  4. Sanderson, M.A.; Reed, R.L.; McLaughlin, S.B.; Wullschleger, S.D.; Conger, B.V.; Parrish, D.J.; Wolf, D.D.; Taliaferro, C.; Hopkins, A.A.; Ocumpaugh, W.R.; et al. Switchgrass as a sustainable bioenergy crop. Bioresour. Technol. 1996, 56, 83-93.
  5. Blankenship, R.E. Molecular Mechanisms of Photosynthesis, 2nd ed.; John Wiley & Sons: Oxford, OH, USA, 2014; p. 312.
  6. Zeller-Powel, C.E. Defining Biomass as a Source of Renewable Energy: The Life-Cycle Carbon Emissions of Biomass Energy and a Survey and Analysis of Biomass Definitions in States' Renewable Portfolio Standards, Federal Law, and Proposed Legislation. Master's Thesis, University of Oregon, Eugene, OR, USA, 2011; p. 97.
  7. Ioelovich, M. High-energy fuel pellets. Sci. Environ. 2020, 3, 147-152.
  8. Ioelovich, M. Recent findings and the energetic potential of plant biomass as a renewable source of biofuels-A review. Bioresources 2015, 10, 1879-1914. [CrossRef]
  9. Fahmy, T.Y.A.; Fahmy, Y.; Mobarak, F.; El-Sakhawy, M.; Abou-Zeid, R.E. Biomass pyrolysis: Past, present, and future. Environ. Dev. Sustain. 2020, 22, 17-32. [CrossRef]
  10. Dawod, A. Pyrolysis of Biomass. Master's Thesis, University of South-East Norway, Porsgrunn, Norway, 2021; p. 81.
  11. Tumuluru, J.S. Pelleting of pine and switchgrass blends: Effect of process variables and blend ratio on the pellet quality and energy consumption. Energies 2019, 12, 1198. [CrossRef]
  12. Ciolkosz, D.E.; Hilton, R.; Swackhamer, C.; Yi, H.; Puri, V.M.; Swomley, D.; Roth, G. Farm-scale biomass pelletizer performance for switchgrass pellet production. Appl. Eng. Agric. 2015, 31, 559-567.
  13. Ioelovich, M. Energy potential of natural, synthetic polymers and waste materials-A review. Acad. J. Polym. Sci. 2018, 1, 1-15.
  14. McLaughlin, L.P.; Belmont, E.L. Size-resolved aerosol emissions from lignocellulosic biomass and biomass constituent pyrolysis under variable dilution temperatures. J. Aerosol. Sci. 2021, 151, 105679. [CrossRef]
  15. He, Y.; Liu, H.; Ying, W. Constructing stable polyvinyl alcohol/gelatin/cellulose nanocrystals composite electrospun membrane with excellent filtration efficiency for PM2.5. Polymers 2024, 16, 1656. [CrossRef]
  16. Larnaudie, V.; Ferrari, M.D.; Lare, C. Switchgrass as an alternative biomass for ethanol production in a biorefinery: Perspectives on technology, economics, and environmental sustainability. Renew. Sustain. Energy Rev. 2022, 158, 112115. [CrossRef]
  17. Keshwani, D.R.; Cheng, J.J. Switchgrass for bioethanol and other value-added applications: A review. Bioresour. Technol. 2009, 100, 1515-1523. [CrossRef]
  18. Amândio, M.S.T.; Rocha, J.M.S.; Xavier, A.M.R.B. Enzymatic hydrolysis strategies for cellulosic sugars production to obtain bioethanol from eucalyptus globulus bark. Fermentation 2023, 9, 241. [CrossRef]
  19. Reis, C.E.R.; Junior, N.L.; Bento, H.B.; de Carvalho, A.K.F.; Vandenberghe, L.P.d.S.; Soccol, C.R.; Aminabhavi, T.M.; Chandel, A.K. Process strategies to reduce cellulase enzyme loading for renewable sugar production in biorefineries. Chem. Eng. J. 2023, 451, 138690. [CrossRef]
  20. Ioelovich, M. Thermodynamics of enzymatic hydrolysis of cellulose. World J. Adv. Res. Rev. 2024, 21, 577-586. [CrossRef]
  21. Da Silva, A.S.; Espinheira, R.P.; Teixeira, R.S.S.; de Souza, M.F.; Ferreira-Leitão, V.; Bon, E.P.S. Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: A critical review. Biotechnol. Biofuels 2020, 13, 58. [CrossRef]
  22. Ioelovich, M. Preparation, characterization and application of amorphized cellulose-A review. Polymers 2021, 13, 4313. [CrossRef]
  23. Xiao, Z.; Zhang, X.; Gregg, D.J.; Saddler, J.N. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. 2004, 113-116, 1115-1126. [CrossRef]
  24. Ansanay, Y.; Kolar, P.; Sharma-Shivappa, R.; Cheng, J.; Arellano, C. Pretreatment of switchgrass for production of glucose via sulfonic acid-impregnated activated carbon. Processes 2021, 9, 504. [CrossRef]
  25. Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673-686. [CrossRef] [PubMed]
  26. Kumar, P.; Barrett, D.; Delwiche, M.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713-3729. [CrossRef]
  27. Wyman, C.E.; Balan, V.; Dale, B.E.; Elander, R.T.; Falls, M.; Hames, B.; Holtzapple, M.T.; Ladisch, M.R.; Lee, Y.Y.; Mosier, N.; et al. Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour. Technol. 2011, 102, 11052-11062. [CrossRef]
  28. Ioelovich, M. Effect of chemical pretreatments on composition and enzymatic digestibility of plant biomass. Res. Rev. J. Chem. 2014, 3, 23-31.
  29. Xu, H.; Che, X.; Ding, Y.; Kong, Y.; Li, B.; Tian, W. Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis. Bioresour. Technol. 2019, 279, 271-280. [CrossRef]
  30. Zhang, H.; Han, L.; Dong, H. An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies. Renew. Sustain. Energy Rev. 2021, 140, 110758. [CrossRef]
  31. Sluiter, J.B.; Ruiz, R.O.; Scarlata, C.J.; Sluiter, A.D.; Templeton, D.W. Compositional analysis of lignocellulosic feedstocks: Review and description of methods. J. Agric. Food Chem. 2010, 58, 9043-9053. [CrossRef]
  32. Wu, J. How to make wood pellets-Small pellet mill and pellet plant. G. Energy 2024, 2, 1-5.
  33. Telmo, C.; Lousada, J. Heating values of wood pellets from different species. Biomass Bioenergy 2011, 35, 2634-2639. [CrossRef]
  34. Elniski, A.; Dongre, P.; Bujanovic, B.M. Lignin use in enhancing the properties of willow pellets. Forests 2023, 14, 2041. [CrossRef] Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.