Cutting Parameter Optimization when Machining Different Materials
2010, Materials and Manufacturing Processes
https://doi.org/10.1080/10426914.2010.480998Abstract
AI
AI
This research focuses on optimizing cutting parameters in the machining of different materials to improve tool life and reduce production costs and times. The study reviews previous literature on cutting forces, tool wear, and surface roughness, highlighting the importance of selecting appropriate parameters for economic machining. Through a series of optimization models conducted on diverse materials with varying hardness levels, the findings present optimized cutting conditions that enhance tool efficiency and machining effectiveness.
References (36)
- Youn, J.W.; Yang, M.Y. A study on the relationships between static/dynamic cutting force components and tool wear. Transactions of the ASME 2001, 123, 196-205.
- Marques, M.J.M.B.; Mesquita, R.M.D. Monitoring the wear of sintered high speed steel tools. Journal of Materials Processing Technology 1991, 25, 195-213.
- Choudhury, S.K.; Kishore, K.K. Tool wear measurement in turning using force ratio. International Journal of Machine Tools and Manufacture 2000, 40, 899-890.
- Schaffer, C.; Kratz, H.; Heyns, P.S.; Klocke, F. Development of a tool wear-monitoring system for hard turning. International Journal of Machine Tools and Manufacture 2003, 43, 973-985.
- Sikdar, S.K.; Chen, M. Relationship between tool flank wear area and component forces in single point turning. Journal of Materials Processing Technology 2004, 153-154, 276-280.
- Wang, J.; Huang, C.Z.; Song, W.G. The effect of tool flank wear on the orthogonal cutting process and its practical implications. Journal of Materials Processing Technology 2003, 142, 338-346.
- Escalona, P.M.; Cassier, Z. Influence of the critical cutting speed on the surface finish of turned steel. Wear 1998, 218, 103-109.
- Ciftci, I. Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribology International 2006, 39, 565-569.
- Paro, J.A.; Gustafsson, T.E.; Koskinen, J. Drilling of conventional cast stainless steel with HIPed NiTi coating. J. Materials Processing Technology 2004, 153-154, 622-629.
- Kumar, A.S.; Durai, A.R.; Sornakumar, T. Wear behaviour of alumina based ceramic cutting tools on machining steels. Tribology International 2006, 39, 191-197.
- Noordin, M.Y.; Venkatesh, V.C.; Sharif, S. Dry turning of tempered martensitic stainless tool steel using coated cermet and coated carbide tools. J. Materials Processing Technology 2007, 185, 83-90.
- Kishawy, H.A.; Elbestawy, M.A. Effect of process parameters on material side flow during hard turning. International Journal of Machine Tools and Manufacturing 1999, 39, 1017-1030.
- More, A.S.; Jiang, W.; Brown, W.D.; Malshe, A.P. Tool wear and machining performance of cBN-TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel. Journal of Materials Processing Technology 2006, 180, 253-262.
- Bouzid, W. Cutting parameter optimization to minimize production time in high speed turning. Journal of Materials Processing Technology 2005, 161, 380-395.
- Choudhury, S.K.; Srinivas, P. Tool wear prediction in turning. Journal of Materials Processing Technology 2004, 153-154, 276-280.
- Asokan, P.; Kumar, R.R.; Jeyapaul, R.; Santhi, M. Development of multi-objective optimization models for electrochemical machining process. International Journal of Advanced Manufacturing Technology 2008, 39, 55-63.
- Cus, F.; Zuperl, U. Approach to optimization of cutting conditions by using artificial neural networks. Journal of Materials Processing Technology 2006, 173 (3), 281-290.
- Ciurana, J.; Arias, G.; Ozel, T. Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Materials and Manufacturing Processes 2009, 24 (3), 358-368.
- T. M. EL-HOSSAINY ET AL.
- Zain, A.M.; Haron, H.; Sharif, S. Prediction of surface roughness in the end milling machining using Artificial Neural Network. Expert Systems with Applications 2010, 37, 1755-1768.
- Lin, Y.C.; Wang, A.C.; Wang, D.A.; Chen, C.C. Machining performance and optimizing machining parameters of Al 2 O 3 -TiC ceramics using EDM based on the Taguchi method. Materials and Manufacturing Processes 2009, 24 (6), 667-674.
- Zhang, J.Z.; Chen, J.C. Surface roughness optimization in a drilling operation using the Taguchi design method. Materials and Manufacturing Processes 2009, 24 (4), 459-467.
- Tzeng, C.J.; Lin, Y.H.; Yang, Y.K.; Jeng, M.C. Optimization of turning operations with multiple performance characteristics using the Taguchi method and grey relational analysis. Journal of Materials Processing Technology 2009, 209, 2753-2759.
- Matoorian, P.; Sulaiman, S.; Ahmad, M.M.H.M. An experimental study for optimization of electrical discharge turning (EDT) process. Journal of Materials Technology 2008, 204, 350-356.
- Rao, R.V.; Pawar, P.J. Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms. Applied Soft Computing 2010, 10, 445-456.
- Zarei, O.; Fesanghary, M.; Farshi, B.; Saffar, R.J.; Razfar, M.R. Optimization of multi-pass face-milling via harmony search algorithm. Journal of Materials Processing Technology 2009, 209, 2386-2392.
- Lavernhe, S.; Tournier, C.; Lartigue, C. Optimization of 5-axis high-speed machining using a surface based approach. Computer- Aided Design 2008, 40, 1015-1023.
- Patel, K.M.; Pandey, P.M.; Rao, P.V. Determination of an optimum parametric combination using a surface roughness prediction model for EDM of Al 2 O 3 /SiCw/TiC ceramic composite. Materials and Manufacturing Processes 2009, 24 (6), 675-682.
- Coello, C.A.C.; Becerra, R.L. Evolutionary multiobjective optimization in materials science and engineering. Materials and Manufacturing Processes 2009, 24 (2), 119-129.
- Aggarwal, A.; Singh, H.; Kumar, P.; Singh, M. Optimization of multiple quality characteristics for CNC turning under cryogenic cutting environment using desirability function. Journal of Materials Processing Technology 2008, 205, 42-50.
- Tiwari, S.; Chakraborti, N. Multi-objective optimization of a two- dimensional cutting problem using genetic algorithms. Journal of Materials Processing Technology 2006, 173 (3), 384-393.
- Vidyakiran, Y.; Mahanty, B.; Chakraborti, N. A genetic- algorithms-based multiobjective approach for a three-dimensional guillotine cutting problem. Materials and Manufacturing Processes 2005, 20 (4), 697-715.
- Malakooti, B. Interactive on-line multi-objective optimization approach with application to metal cutting turning operation. International Journal of Production Research 1991, 29 (3), 575- 598.
- Patil, N.G.; Brahmankar, P.K.; Navale, L.G. Some investigations into multi-objective optimization of wire electrodischarge machining of AL/SICp composites. Proceedings of the ASME International Manufacturing Science and Engineering Conference (MSEC) 2007, 967-974.
- Xingzhong, Z.; Baoliang, L.J.Z.; Hezhou, M.; Zhenbi, L. Wear behavior of Si3N4 ceramic cutting tool material against stainless steel in dry and water-lubricated conditions. Ceramics International 1999, 25, 309-315.
- Optimization Modeling With Lingo, 4th Ed.; LINDO Systems Inc.: Chicago, Illinois, 2001.