Academia.eduAcademia.edu

Outline

MHC-Peptide binding prediction for epitope based vaccine design

2007, … Journal of Integrative …

Abstract

The identification of MHC binding peptides for consideration as potential T-cell epitopes has application in peptide vaccine design and immunotherapy. Determination of MHCp binding using experimental measures is time-consuming and expensive. Therefore, efficient prediction models are required that facilitate systematic computational scanning of microbial genome for candidate T cell epitopes. These prediction models are either sequence or 3D structure based. This review provides a comparative analysis on the available prediction models with specific emphasis on the salient features of each model, its prediction efficiency, and merits and demerits.

References (84)

  1. Ada G (2007) The importance of vaccination, Front Biosci, 12, 1278-1290.
  2. Adams HP and Koziol JA (1995) Prediction of binding to MHC class I molecules, J. Immunol. Methods 185, 181-190.
  3. Altuvia Y, Schueler O and Margalit H (1995) Ranking potential binding peptides to MHC molecules by a computational threading approach, J. Mol. Biol. 249, 244-250.
  4. Altuvia Y, Sette A, Sidney J, Southwood S and Margalit H (1997) A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets, Hum. Immunol. 58, 1-11.
  5. Antes I, Siu SW and Lengauer T (2006) DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations, Bioinformatics 22, e16-24.
  6. Batalia MA and Collins EJ (1997) Peptide binding by class I and class II MHC molecules, Biopolymers 43, 281-302.
  7. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J and Wheeler DL (2007) GenBank, Nucleic Acids Res. 35, D21-25.
  8. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD and Zardecki C (2002) The Protein Data Bank, Acta Crystallogr D Biol Crystallogr, 58, 899-907.
  9. Betancourt MR and Thirumalai D (1999) Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes, Protein Sci. 8, 361-369.
  10. Bhasin M and Raghava GP (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques, Vaccine 22, 3195-3204.
  11. Bhasin M and Raghava GP (2004) SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence, Bioinformatics 20, 421-423.
  12. Bhasin M and Raghava GP (2007) A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes, J. Biosci. 32, 31-42.
  13. Borras-Cuesta F, Golvano J, Garcia-Granero M, Sarobe P, Riezu-Boj J, Huarte E and Lasarte J (2000) Specific and general HLA-DR binding motifs: comparison of algorithms, Hum. Immunol. 61, 266-278.
  14. Brusic V, Bajic VB and Petrovsky N (2004) Computational methods for prediction of T-cell epitopes--a framework for modelling, testing, and applications, Methods 34, 436-443.
  15. Brusic V, Petrovsky N, Zhang G and Bajic VB (2002) Prediction of promiscuous peptides that bind HLA class I molecules, Immunol. Cell Biol. 80, 280-285.
  16. Brusic V, Rudy G, Honeyman G, Hammer J and Harrison L (1998) Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network, Bioinformatics 14, 121-130.
  17. Cochlovius B, Stassar M, Christ O, Raddrizzani L, Hammer J, Mytilineos I and Zoller M (2000) In vitro and in vivo induction of a Th cell response toward peptides of the melanoma-associated glycoprotein 100 protein selected by the TEPITOPE program, J. Immunol., 165, 4731-4741.
  18. Collins EJ, Garboczi DN, Karpusas MN and Wiley DC (1995) The three-dimensional structure of a class I major histocompatibility complex molecule missing the alpha 3 domain of the heavy chain, Proc Natl Acad Sci U S A, 92, 1218-1221.
  19. Cooper S, Erickson AL, Adams EJ, Kansopon J, Weiner AJ, Chien DY, Houghton M, Parham P and Walker CM (1999) Analysis of a successful immune response against hepatitis C virus, Immunity 10, 439-449.
  20. Cui J, Han LY, Lin HH, Tang ZQ, Jiang L, Cao ZW and Chen, Y.Z. (2006) MHC-BPS: MHC-binder prediction server for identifying peptides of flexible lengths from sequence- derived physicochemical properties, Immunogenetics 58, 607-613.
  21. Cui J, Han LY, Lin HH, Zhang HL, Tang ZQ, Zheng CJ, Cao ZW and Chen YZ (2007) Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties, Mol. Immunol. 44, 866-877.
  22. D'Amaro J, Houbiers JG, Drijfhout JW, Brandt RM, Schipper R, Bavinck JN, Melief CJ and Kast WM (1995) A computer program for predicting possible cytotoxic T lymphocyte epitopes based on HLA class I peptide-binding motifs, Hum. Immunol. 43, 13-18.
  23. Disis ML, Gralow JR, Bernhard H, Hand SL, Rubin WD and Cheever MA (1996) Peptide-based, but not whole protein, vaccines elicit immunity to HER-2/neu, oncogenic self- protein, J. Immunol. 156, 3151-3158.
  24. Donnes P and Elofsson A (2002) Prediction of MHC class I binding peptides, using SVMHC, BMC Bioinformatics 3, 25.
  25. Donnes P and Kohlbacher O (2006) SVMHC: a server for prediction of MHC-binding peptides, Nucleic Acids Res. 34, W194-197.
  26. Doytchinova IA and Flower DR (2001) Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201, J. Med. Chem. 44, 3572-3581.
  27. Doytchinova IA and Flower DR (2003) Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction, Bioinformatics 19, 2263-2270.
  28. Falk K, Rotzschke O and Rammensee HG (1990) Cellular peptide composition governed by major histocompatibility complex class I molecules, Nature 348, 248-251.
  29. Gross DM, Forsthuber T, Tary-Lehmann M, Etling C, Ito K, Nagy ZA, Field JA, Steere AC and Huber BT (1998) Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis, Science 281, 703-706.
  30. Gulukota K, Sidney J, Sette A and DeLisi C (1997) Two complementary methods for predicting peptides binding major histocompatibility complex molecules, J. Mol. Biol. 267, 1258-1267.
  31. Guo HC, Jardetzky TS, Garrett TP, Lane WS, Strominger JL and Wiley DC (1992) Different length peptides bind to HLA- Aw68 similarly at their ends but bulge out in the middle, Nature 360, 364-366.
  32. Guo HC, Madden DR, Silver ML, Jardetzky TS, Gorga JC, Strominger JL and Wiley DC (1993) Comparison of the P2 specificity pocket in three human histocompatibility antigens: HLA-A*6801, HLA-A*0201, and HLA-B*2705, Proc Natl Acad Sci U S A 90, 8053-8057.
  33. Hammer J, Gallazzi F, Bono E, Karr RW, Guenot J, Valsasnini P, Nagy ZA and Sinigaglia F (1995) Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association, J. Exp. Med. 181, 1847-1855.
  34. Ishioka GY, Fikes J, Hermanson G, Livingston B, Crimi C, Qin M, del Guercio MF, Oseroff C, Dahlberg C, Alexander J, Chesnut RW and Sette A (1999) Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes, J. Immunol. 162, 3915-3925.
  35. Iwasaki A and Barber BH (1998) Induction by DNA immunization of a protective antitumor cytotoxic T lymphocyte response against a minimal-epitope-expressing tumor, Cancer Immunol Immunother 45, 273-279.
  36. Jernigan RL and Bahar I (1996) Structure-derived potentials and protein simulations, Curr. Opin. Struct. Biol. 6, 195-209.
  37. Jojic N, Reyes-Gomez M, Heckerman D, Kadie C and Schueler-Furman O (2006) Learning MHC I--peptide binding, Bioinformatics 22, e227-235.
  38. Jones DT and Thornton JM (1996) Potential energy functions for threading, Curr. Opin. Struct. Biol. 6, 210-216.
  39. Karpenko O, Shi J and Dai Y (2005) Prediction of MHC class II binders using the ant colony search strategy, Artif. Intell. Med. 35, 147-156.
  40. Kawashima I, Hudson SJ, Tsai V, Southwood S, Takesako K, Appella E, Sette A and Celis E (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors, Hum. Immunol. 59, 1-14.
  41. Kubo RT, Sette A, Grey HM, Appella E, Sakaguchi K, Zhu NZ, Arnott D, Sherman N, Shabanowitz J, Michel H et al. (1994) Definition of specific peptide motifs for four major HLA-A alleles, J. Immunol. 152, 3913-3924.
  42. Liu W, Meng X, Xu Q, Flower DR and Li T (2006) Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models, BMC Bioinformatics 7, 182.
  43. Logean A and Rognan D (2002) Recovery of known T-cell epitopes by computational scanning of a viral genome, J. Comput Aided Mol. Des. 16, 229-243.
  44. Logean A, Sette A and Rognan D (2001) Customized versus universal scoring functions: application to class I MHC- peptide binding free energy predictions, Bioorg Med. Chem. Lett. 11, 675-679.
  45. Madden DR, Garboczi DN and Wiley DC (1993) The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2, Cell 75, 693-708.
  46. Mallios RR (1999) Class II MHC quantitative binding motifs derived from a large molecular database with a versatile iterative stepwise discriminant analysis meta-algorithm, Bioinformatics 15, 432-439.
  47. Mamitsuka H (1998) Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models, Proteins 33, 460-474.
  48. Mathura VS and Braun W (2001) New quantitative descriptors of amino acids based on multidimensional scaling of a large number of physical-chemical properties, J. Mol. Modeling 445-453.
  49. Meister GE, Roberts CG, Berzofsky, J.A. and De Groot, A.S. (1995) Two novel T cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences, Vaccine 13, 581-591.
  50. Milik M, Sauer D, Brunmark AP, Yuan L, Vitiello A, Jackson MR, Peterson PA, Skolnick J and Glass CA (1998) Application of an artificial neural network to predict specific class I MHC binding peptide sequences, Nat. Biotechnol. 16, 753-756.
  51. Miyazawa S and Jernigan RL (1985) Estimation of effective inter-residue contact energies from protein crystal structure, quasi-chemical approximation, Macromolecules 18, 534-552.
  52. Miyazawa S and Jernigan RL (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading, J. Mol. Biol. 256, 623-644.
  53. Morgan DJ, Kreuwel HT, Fleck S, Levitsky HI, Pardoll DM and Sherman, L.A. (1998) Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity, J. Immunol. 160, 643-651.
  54. Nielsen M, Lundegaard C, Worning P, Hvid CS, Lamberth K, Buus S, Brunak S and Lund O (2004) Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach, Bioinformatics 20, 1388-1397.
  55. Noguchi H, Kato R, Hanai T, Matsubara Y, Honda H, Brusic V and Kobayashi T (2002) Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules, J. Biosci. Bioeng. 264-270.
  56. Pamer E and Cresswell P (1998) Mechanisms of MHC class I--restricted antigen processing, Annu. Rev. Immunol. 16, 323-358.
  57. Parker KC, Bednarek MA and Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains, J. Immunol., 152, 163-175.
  58. Raddrizzani L and Hammer J (2000) Epitope scanning using virtual matrix-based algorithms, Brief. Bioinform. 1, 179-189.
  59. Rammensee H, Bachmann J, Emmerich NP, Bachor OA and Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs, Immunogenetics 50, 213-219.
  60. Rammensee HG, Friede T and Stevanoviic S (1995) MHC ligands and peptide motifs: first listing, Immunogenetics 41, 178-228.
  61. Reche PA, Glutting JP and Reinherz EL (2002) Prediction of MHC class I binding peptides using profile motifs, Hum. Immunol. 63, 701-709.
  62. Robinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ, Stoehr P and Marsh SG (2003) IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex, Nucleic Acids Res. 31, 311-314.
  63. Rognan D, Lauemoller SL, Holm A, Buus S and Tschinke V (1999) Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins, J. Med. Chem. 42, 4650-4658.
  64. Rognan D, Scapozza L, Folkers G and Daser A (1994) Molecular dynamics simulation of MHC-peptide complexes as a tool for predicting potential T cell epitopes, Biochemistry 33, 11476-11485.
  65. Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM and Sette A (1993) Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules, Cell 74, 929-937.
  66. Salomon J and Flower DR (2006) Predicting Class II MHC- Peptide binding: a kernel based approach using similarity scores, BMC Bioinformatics 7, 501.
  67. Saper MA, Bjorkman PJ and Wiley DC (1991) Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution, J. Mol. Biol. 219, 277-319.
  68. Sarobe P, Pendleton CD, Akatsuka T, Lau D, Engelhard VH, Feinstone SM and Berzofsky JA (1998) Enhanced in vitro potency and in vivo immunogenicity of a CTL epitope from hepatitis C virus core protein following amino acid replacement at secondary HLA-A2.1 binding positions, J. Clin. Invest. 102, 1239-1248.
  69. Sawyer RT, Gergen PJ, Minnicozzi M, Plaut M, Dong G, Schwaninger JM and Fenton MJ (2006) The future of immunotherapy. Report of a National Institute of Allergy and Infectious Diseases (NIAID), Division of Allergy, Immunology and Transplantation (DAIT) workshop, Allergy 61, 1159-1161.
  70. Schueler-Furman O, Altuvia Y, Sette A and Margalit H (2000) Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles, Protein Sci. 9, 1838-1846.
  71. Schueler-Furman O, Elber R and Margalit H (1998) Knowledge-based structure prediction of MHC class I bound peptides: a study of 23 complexes, Fold. Des. 3, 549-564.
  72. Sette A, Buus S, Appella E, Smith JA, Chesnut R, Miles C, Colon SM and Grey HM (1989) Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis, Proc Natl Acad Sci U S A 86, 3296-3300.
  73. Sette A, Vitiello A, Reherman B, Fowler P, Nayersina R, Kast WM, Melief CJ, Oseroff C, Yuan L, Ruppert J et al. (1994) The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes, J. Immunol., 153, 5586-5592.
  74. © IJIB, All rights reserved MHC-Peptide binding prediction for epitope based vaccine design Skolnick J, Jaroszewski L, Kolinski A and Godzik A (1997) Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct?, Protein Sci. 6, 676-688.
  75. Stassar MJ, Raddrizzani L, Hammer J and Zoller M (2001)
  76. T-helper cell-response to MHC class II-binding peptides of the renal cell carcinoma-associated antigen RAGE-1, Immunobiology 203, 743-755.
  77. Stryhn A, Pedersen LO, Romme T, Holm CB, Holm A and Buus S (1996) Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent subspecificities: quantitation by peptide libraries and improved prediction of binding, Eur J. Immunol. 26, 1911-1918.
  78. Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M, Gallazzi F, Protti MP, Sinigaglia F and Hammer J (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices, Nat. Biotechnol. 17, 555- 561.
  79. Trost B, Bickis M and Kusalik A (2007) Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools, Immunome Res. 3, 5.
  80. Udaka K, Wiesmuller KH, Kienle S, Jung G, Tamamura H, Yamagishi H, Okumura K, Walden P, Suto T and Kawasaki T (2000) An automated prediction of MHC class I-binding peptides based on positional scanning with peptide libraries, Immunogenetics 51, 816-828.
  81. van der Burg SH, Visseren MJ, Brandt RM, Kast WM and Melief CJ (1996) Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability, J. Immunol. 156, 3308-3314.
  82. Viret C and Janeway CA Jr. (1999) MHC and T cell development, Rev. Immunogenet. 1, 91-104.
  83. Zeng J, Treutlein HR and Rudy GB (2001) Predicting sequences and structures of MHC-binding peptides: a computational combinatorial approach, J. Comput. Aided Mol. Des. 15, 573-586.
  84. Zhang C, Bickis MG, Wu FX and Kusalik AJ (2006) Optimally-connected hidden markov models for predicting MHC-binding peptides, J. Bioinform. Comput. Biol. 4, 959- 980. Zhao B, Mathura VS, Rajaseger G, Moochhala S, Sakharkar MK and Kangueane P (2003) A novel MHCp binding prediction model, Hum. Immunol. 64, 1123-1143.