Academia.eduAcademia.edu

Outline

Information capacity of the carbohydrate code

1997, Pure and Applied Chemistry

https://doi.org/10.1351/PAC199769091867

Abstract

Capacity for information in biological molecules is traditionally thought to reside in the primary sequence of proteins and RNA, recorded in the DNA. With the exception of some RNA molecules, proteins, if not structural, carry their information in binding sites for substrates of reactions, or in binding sites for control molecules. Some proteins bind to complex carbohydrates in a carbohydrate-specific fashion, including enzymes, lectins and antibodies. These carbohydrates, assembled by sequential glycosyl transferases, also carry biological information, the other side of which is a binding protein that recognizes a specific sugar monosaccharides, sequence, anomerity, linkage, ring size, branching and substitution. It is the latter 7 parameters, however, that give carbohydrates a very large potential for information-carrying capacity in a short sequence. An exponentially growing body of knowledge exists in this aspect of carbohydrate function.

References (54)

  1. R. Laine. Glycobiology 4,759-67 (1994).
  2. R. Laine. In: Glycosciences: Status and Perspectives (eds. Gabius H and Gabius S), pp. 1-15. Chapman & Hall, Weinheim (1997).
  3. I. Eggens, B. Fenderson, T. Toyokuni and S. Hakomori. Biochem Biophys Res Commun 158,913-20 (1989).
  4. B. Fenderson, E. Eddy and S. Hakomori. Bioessays 12, 173-9 (1990).
  5. K. Koshy and J. Boggs. JBiol Chem 271,3496-9 (1996).
  6. M. Kumar and D. Sarkar. FEBS Lett 391, 17-20 (1996).
  7. C. Melito and A. Levy-Benshimol. Acta Cient Venez 43,3 12-4 (1992).
  8. G. Misevic and M. Burger. J Biol Chern 268,4922-9 (1993).
  9. G. Misevic and 0. Popescu. JMolRecognit 8, 100-5 (1995).
  10. L. Sellers and A. Allen. Symp Soc Exp Biol43, 65-71 (1989).
  11. D. Spillmann, J. Thomas-Oates, K. J. van, J. Vliegenthart, G. Misevic, M. Burger and J. Finne. J Biol Chem 270,5089-97 (1995).
  12. R. Stewart and J. Boggs. Biochemistry 32, 10666-74 (1993).
  13. Z. Zhu, N. Kojima, M. Stroud, S. Hakomori and B. Fenderson. BiolReprod 52,903-12 (1995).
  14. L. Lasky. Annu Rev Biochem 64, 113-39 (1995).
  15. R. Cummings and D. Smith. Bioessays 14, 849-56 (1992).
  16. C. Smith. Can JPhysiol Pharmacol71,76-87 (1993).
  17. A. Varki. Proc NatlAcadSci U S A 91,7390-7 (1994).
  18. D. Vestweber. Sernin Cell Biol3,211-20 (1992).
  19. J. Whelan. Trends Biochem Sci 21, 65-9 (1996).
  20. K. Baureithel, G. Felix and T. Boller. JBiol Chem 269, 1793 1-8 (1994).
  21. S. Ikeshita, Y . Nakahara and T. Ogawa. GlycoconjJ 11,257-61 (1994).
  22. R. Poupot, E. Martinez-Romero, N. Gautier and J. Prome. JBiol Chern 270,6050-5 (1995).
  23. H. Wu, H. Wang and A. Cheung. Cell 82,395-403 (1995).
  24. 1997 IUPAC, Pure and Applied Chemistry 09, 1867-1873
  25. T. Herget, J. Schell and P. Schreier. Mol Gen Genet 224,469-76 (1990).
  26. Y. Okinaka, K. Mimori, K. Takeo, S. Kitamura, Y. Takeuchi, N. Yamaoka and M. Yoshikawa. Plant Physiol
  27. W. Chen, J. Helenius, I. Braakman and A. Helenius. Proc NatlAcadSci U S A 92,6229-33 (1995).
  28. D. Hebert, B. Foellmer and A. Helenius. Cell 81,425-33 (1995).
  29. R. Bresciani and F. K. Von. Eur JBiochem 238,669-74 (1996).
  30. W. Nauseef, S. McCormick and H. Yi. Blood 80,2622-33 (1992).
  31. M. Ragazzi, D. Ferro, B. Perly, G. Torri, B. Casu, P. Sinay, M. Petitou and J. Choay. Carbohydr Res 165, cl-5 (1987).
  32. U. Lindahl, L. Thunberg, G. Backstrom, J. Riesenfeld, K. Nordling and I. Bjork. J Biol Chem 259, 12368-76 (1984). 109,839-45 (1995).
  33. U. Lindahl, G. Backstrom, L. Thunberg and I. Leder. Proc Natl AcadSci U S A 77,6551-5 (1980).
  34. A. Lellouch and P. J. Lansbury. Biochemistry 31,2279-85 (1992).
  35. J. Bae, U. Desai, A. Pervin, E. Caldwell, J. Weiler and R. Linhardt. Biochem 5301 ( Pt l), 121-9 (1994).
  36. D. Atha, A. Stephens, A. Rimon and R. Rosenberg. Biochemistry 23,5801-12 (1984).
  37. B. Caw, P. Oreste, G. Torri, G. Zoppetti, J. Choay, J. Lormeau, M. Petitou and P. Sinay.
  38. J. Choay, M. Petitou, J. Lormeau, P. Sinay, B. Casu and G. Gatti. Biochem Biophys Res Commun 116, 492-9 Biochem J 197, 599-609 (1981).
  39. C. van Boekel and M. Petitou. Angewante Chemistry International Edition English 32, 1671-1690 (1993).
  40. B. Casu, G. Grazioli, N. Razi, M. Guerrini, A. Naggi, G. Torri, P. Oreste, F. Tursi, G. Zoppetti and U. Lindahl. Carbohydr Res 263,271-84 (1994).
  41. U. Lindahl, K. Lidholt, D. Spillman and L. KjellCn. Thrombosis Research 75, 1-32 (1994).
  42. T. Arai, A. Parker, W. J. Busby and D. Clemmons. JBiol Chem 269,20388-93 (1994).
  43. R. Copeland, H. Ji, A. Halfpenny, R. Williams, K. Thompson, W. Herber, K. Thomas, M. Bruner, J. Ryan, D. Marquis-Omer and a. et. Arch Biochem Biophys 289,53-61 (1991).
  44. S. Faham, R. Hileman, J. Fromm, R. Linhardt and D. Rees. Science 271, 1 1 16-20 (1996).
  45. M. Klagsbrun, R. Sullivan, S . Smith, R. Rybka and Y. Shing. Methods Enzymoll47, 95-105 (1987).
  46. G. Oosta, W. Gardner, D. Beeler and R. Rosenberg. Proc Natl AcadSci U S A 78,829-33 (1981).
  47. D. Rabenstein, J. Robert and S . Hari. FEBS Lett 376,216-20 (1995).
  48. N. Shao, H. Wang, T. Zhou, Y. Xue and C. Liu. Life Sci 54,785-9 (1994).
  49. A. Strain, G. McGuinness, J. Rubin and S. Aaronson. Exp Cell Res 210,253-9 (1994).
  50. T. Taniguchi, M. Toi and T. Tominaga. Lancet 344,470 (1994).
  51. L. Thompson, M. Pantoliano and B. Springer. Biochemistry 33,3831-40 (1994).
  52. 1 A. Triantos, G. Koliakos, E. Kavoukopoulos, A. Dimitriadou and A. Trakatellis. Biochem Mol Biol Int 37, 737- 45 (1995).
  53. B. Casu, D. Ferro, M. Ragazzi and G. Torri. In: Dermatan sulfateproteoglycans, Chemistry, Biology. (ed. Scott J), pp. 41-43. Portland Press, London (1993).
  54. G. Mascellani, L. Liverani, A. Prete, G. Bergonzini, P. Bianchini, G. Torri, A. Bisio, M. Guerrini and B. Casu. Anal Biochem 223, 135-41 (1994).