Krylov-secant methods for solving systems of nonlinear equations
Abstract
We present a novel way of reusing the Krylov information generated by GMRES for solving the linear system arising within a Newton method. Our approach departs from the theory of ,ecant preconditioners developed by Martinez and then combines secant updates of the Hessenberg matrix generated by the Arnoldi process in GMRES, the Richardson iteration and limited memory quasi-Newton compact representations to generate descent directions for each Newton step. The proposed method allows to reflect-without explicitly computing them-secant updates of the Jacobian matrix that lead us to skip GM RES for the benefit of satisfying the Dembo-Eisenstat-Steihaug condition. Hence, the resulting method turns out to be computationally more economical than traditional inexact Newton implementations. Computational experiments reveal the suitability of this approach for large scale problems in several application contexts.
References (61)
- Give an initial guess u(o), preconditioner Af ( 0 ) and tolerance ry( 0 ). Set skip = FALSE.
- For k = 0, 1, ... , until convergence do 2.1 If (skip= FALSE) then
- 1.1 Compute J(k), F(k) and Af(k).
- 1.2 else Update H(k) by (26), J(k) by (38) and M(k) by ( 40); endif.
- 2.1 If ( H(k) is nonsingular) then 2.2.l.l [n) = Eig(H).
- 2.1.3 [s(kl,ok] = Richardson(J(kl,-F(k),s(k),i\;J(k),T/(k), r).
- 2.2.2 u(k+l) = u(k) + ,\(k)s(k) 2.2.2.;1 else skip = FALSE; endif
- 3 else [s(k+l)] = GMRES(J(k),-F(kl,s(k),M(k),17(k)).
- 4 [,\(k),,_,(k+t)] = Backtracking(J(kl,F(k),s(k),u(k),1-,(kl).
- AXELSSON AND P. VASSILEVSKI, A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning, SIAM J. Matrix Anal. Appl., 12 (1991 ), pp. 625- 644.
- J. BARNES, An algorithm for solving nonlinear equations based on the secant method, Computer Journal, 8 (1965), pp. 66-67.
- R. BARRETT, M. BERRY, T. CHAN, J. DEMMEL, J. DUNATO, J. DoNGARRA, V. EIKKHOUT, R. Pozo, C. ROMINE, AND H. VAN DER VoRST, Templates for the solution of linear systems: building blocks for iterative methods, SIAM, Philadelphia, 1994.
- J. BEAR, Dynamics of Fluids in Porous Media, Dover Publications, Inc, 1972.
- P. BROWN, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Statist. Comput., 20 {1992), pp. 58-78.
- P. BROWN AND Y. SAAD, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput., 11 {1990), pp. 450-481.
- P. BROWN, Y. SAAD, AND H. WALKER, Preconditioning with low rank updates. In preparation, 1995.
- P. N. BROWN, A. HINDMARSH, AND L. PETZOLD, Using Kry/av methods in the solution of large-scale differential-algebraic systems, SIAM J. Sci. Comput., 15 (1994), pp. 1467-1488.
- P. N. BROWN AND Y. SAAD, Convergence theory of nonlinear Netwon-Krylov algorithms, SIAM J. Optim., 4 (1994), pp. 297-330.
- C. BROYDEN, The convergence of single-rank quasi-Newton methods, Mathematics of Compu- tation, 24 {1970), pp. 365-382.
- R. BYRD, J. NocEDAL, AND R. SCHNABEL, Representations of quasi-Newton matrices and their use in limited memory methods, Math. Programming, 63 (1994), pp. 129-156.
- X.-C. CAI AND M. DRYJA, Domain decomposition methods for monotone nonlinear elliptic prob- lems, in Seventh International Conference on Domain Decomposition Methods for Scientific Computing, D. Keyes and J. Xu, eds., Como, Italy, 1993, American Mathematical Society.
- X.-C. CAI, W. GROPP, D. KEYES, AND M. TIDRIRI, Newton-Krylov-Schwarz methods in CFD, in International Workshop on the Navier--Stokes Equations, R. Rannacher, ed., Braun- schwieg, 1994, Notes in Numerical Fluid Mechanics, Vieweg Verlag.
- E. CARNOY AND M. GERADIN, On the practical use of the Lanczos algorithm in finite element applications and bifurcation problems, in Conference on Matrix Pencils, Lulea, Sweden, 1982, Springer Verlag, New York, pp. 156-176.
- C. DAWSON, H. KLfE, C. S. SOUCIE, AND M. WHEELER, A new solver for parallel multiphase flow reservoir simulation with Juli tensor permeabilities and general boundary conditions. In preparation, 1995.
- R. DEMBO, S. EISENSTAT, AND T. STEIHAUG, Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982), pp. 400-408.
- J. DENNIS AND J. MoRii:, A characterization of superlinear convergence and its applications to quasi-Newton methods, Math. Comp., 228 (1974), pp. 549-560.
- J. E. DENNIS AND R. 8. SCHNABEL, Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
- P. DEUFLHARD, R. FREUND, AND A. WALTER, Fast secant methods for the iterative solution of large nonsymmetric linear systems, IMPACT of Computing in Science and Engineering, 2 (1990), pp. 244-276.
- T. EIROLA AND 0. NEVANLINNA, Accelerating with rank-one updates, Linear Alg. and its Appl., 121 (1989), pp. 511-520.
- S. EISENSTAT AND H. WALKER, Choosing the forcing terms in an inexact Newton method, Tech. Rep. TR94-25, Dept. of Computational and Applied Mathematics, Rice University, 1994.
- --, Globally convergent inexact Newton methods, SIAM J. Optimization, 4 (1994), pp. 393- 422.
- R. FREUND, G. GOLUB, AND N. M. NACHT!GAL, Iterative .rnlution of linear systems, in Acta Numerica, Cambridge University Press, New York, 1991, pp. 57-100.
- D. GAY AND R. SCHNABEL, Solving systems of nonlinear equations by Broyden's method with projected updates, in Nonlinear Programming 3, 0. Mangasarian, R. Meyer, and S. Robinson, eds., Academic Press, N.Y., 1978, pp. 245-281.
- G. GOLUB AND C. V. LOAN, Matrix Computations, John Hopkins University Press, 1989.
- G. GOLUB AND M. OVERTON, The convergence of inexact Chebyshev and Richardson iterative methods for solving linear systems, Numer. Math., 53 (1988), pp. 571-593.
- W. HACKBUSH, Iterative Solution of Large Sparse Systems of Equations, Applied Mathematical Science, Springer-Verlag, 1994.
- M. HEINKENSCHLOSS, Krylov subspace methods for the solution of linear systems and linear least squares problems. Lecture Notes, Draft, November 1994.
- M. HEINKENSCHLOSS AND L. VICENTE, Analysis of inexact trust-region interior-point SPQ algorithms, Tech. Rep. TR95-18, Dept. of Computational and Applied Mathematics, Rice University, 1995.
- C. KELLEY, Iterative methods for linear and nonlinear equations, in Frontiers in Applied Math- ematics, SIAM, Philadelphia, 1995.
- T. MANTEUFFEL, The Tchebychev iteration for nonsymmetric linear systems, N umer. Math., 28 (1977), pp. 307-327.
- J. MARTINEZ, Theory of secant preconditioners, Math. of Computation, 60 (1993), pp. 699-718.
- J. MoRE, A collection of nonlinear problems, in Lectures in Applied Mathematics, Vol. 26, E. Allgower and K. Georg, eds., American Mathematical Society, 1990, pp. 723-762.
- N. NACHTIGAL, L. REICHEL, AND L. TREFETHEN, A hybrid GM RES algorithm for nonsymmet- ric linear systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 796-825.
- S. NASH, Newton-type minimization via the Lanczos algorithm, SIAM J. Num. Anal., 21 (1984), pp. 770-778.
- --, Newton-type minimization via the Lanczos algorithm, SIAM J. Sci. Stat. Comput., 6 (1985), pp. 599-616.
- J. N OCEDAL, Theory of algorithms for unconstrained optimization, in Acta N umerica, Cambridge University Press, New York, 1991, pp. 199-242.
- B. NoUR-0MID, B. PARLETT, AND R. TAYLOR, A Newton-Lanczos method for solution of nonlinear finite element equations, Computers and Structures, 16 (1983), pp. 241-252.
- G. OPFER AND G. SCHOBER, Richardson's iteration for nonsymmetric matrices, Linear Alg. and Appl., 58 (1984), pp. 343-361.
- J. ORTEGA AND W. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
- B. PARLETT, A new look at the Lanczos algorithm for solving symmetric systems of linear equations, Linear Alg. and Appl., 29 (1980), pp. 323-346.
- L. REICHEL, The application of Leja points to Richardson iteration and polynomial precondi- tioning, Linear Alg. and Appl., 154-156 (1991), pp. 389-414.
- Y. SAAD, On the Lanczos method for solving symmetric linear systems with several right-hand- sides, Mathematics of Computation, 48 (1987), pp. 651-662.
- Y. SAAD AND M. SCHULTZ, GM RES: A generalized minimal residual algorithm for solving non- symmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869.
- P. SAYLOR AND D. SMOLARSKI, Implementation of an adaptive algorithm for Richardson's al- gorithm, Linear Alg. and Appl., 154-156 (1991), pp. 615-646.
- V. SIMONCINI AND E. GALLOPOULOS, A memory-conserving hybrid method for solving linear systems with multiple right-hand sides, Tech. Rep. CSRD-1203, Center for Supercomputing Research and Development, University of Illinois, Urbana-Champaign, Feb. 1992.
- --, An iterative method for nonsymmetric systems with multiple right-hand sides, SIAM J. Sci. Statist. Comput., 16 (1995), pp. 917-933.
- H. VAN DER VORST AND C. VuIK, GMRESR: A Family of Nested GMRES Methods, Tech. Rep. TR91-80, Technological University of Delft, 1991.
- H. WALKER, Implementations of the GM RES method, Computer Physics Commmunications, 53 (1989), pp. 311-320.
- L. WIGTON, D. Yu, AND N. YOUNG, GM RES acceleration of computational fluid dynamics codes, in Proceedings 1985 AIAA Conference, Denver, CO, 1985.
- U. YANG, A family of preconditioned iterative solvers for sparse linear systems, PhD thesis, Dept. of Computer Science, University of Illinois, Urbana-Champaign, 1995.
- D. YOUNG, Iterative Solution of Large Linear Systems, Academic Press, 1971.