Oxidative UO2 dissolution induced by soluble Mn (III)
https://doi.org/10.1021/ES4037308Abstract
The stability of UO 2 is critical to the success of reductive bioremediation of uranium. When reducing conditions are no longer maintained, Mn redox cycling may catalytically mediate the oxidation of UO 2 and remobilization of uranium. Ligand-stabilized soluble Mn(III) was recently recognized as an important redox-active intermediate in Mn biogeochemical cycling. This study evaluated the kinetics of oxidative UO 2 dissolution by soluble Mn(III) stabilized by pyrophosphate (PP) and desferrioxamine B (DFOB). The Mn(III)−PP complex was a potent oxidant that induced rapid UO 2 dissolution at a rate higher than that by a comparable concentration of dissolved O 2 . However, the Mn(III)−DFOB complex was not able to induce oxidative dissolution of UO 2 . The ability of Mn(III) complexes to oxidize UO 2 was probably determined by whether the coordination of Mn(III) with ligands allowed the attachment of the complexes to the UO 2 surface to facilitate electron transfer. Systematic investigation into the kinetics of UO 2 oxidative dissolution by the Mn(III)−PP complex suggested that Mn(III) could directly oxidize UO 2 without involving particulate Mn species (e.g., MnO 2 ). The expected 2:1 reaction stoichiometry between Mn(III) and UO 2 was observed. The reactivity of soluble Mn(III) in oxidizing UO 2 was higher at lower ratios of pyrophosphate to Mn(III) and lower pH, which is probably related to differences in the ligand-to-metal ratio and/or protonation states of the Mn(III)−pyrophosphate complexes. Disproportionation of Mn(III)−PP occurred at pH 9.0, and the oxidation of UO 2 was then driven by both MnO 2 and soluble Mn(III). Kinetic models were derived that provided excellent fits of the experimental results.
References (65)
- Bargar, J. R.; Bernier-Latmani, R.; Giammar, D. E.; Tebo, B. M. Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 2008, 4 (6), 407-412.
- Bargar, J. R.; Williams, K. H.; Campbell, K. M.; Long, P. E.; Stubbs, J. E.; Suvorova, E. I.; Lezama-Pacheco, J. S.; Alessi, D. S.; Stylo, M.; Webb, S. M.; Davis, J. A.; Giammar, D. E.; Blue, L. Y.; Bernier- Latmani, R. Uranium redox transition pathways in acetate-amended sediments. Proc. Natl. Acad. Sci., U. S. A. 2013, 110 (12), 4506-4511.
- Bernier-Latmani, R.; Veeramani, H.; Vecchia, E. D.; Junier, P.; Lezama-Pacheco, J. S.; Suvorova, E. I.; Sharp, J. O.; Wigginton, N. S.; Bargar, J. R. Non-uraninite products of microbial U(VI) reduction. Environ. Sci. Technol. 2010, 44 (24), 9456-9462.
- Fletcher, K. E.; Boyanov, M. I.; Thomas, S. H.; Wu, Q. Z.; Kemner, K. M.; Loffler, F. E. U(VI) reduction to mononuclear U(IV) by Desulf itobacterium species. Environ. Sci. Technol. 2010, 44 (12), 4705-4709.
- Ulrich, K. U.; Ilton, E. S.; Veeramani, H.; Sharp, J. O.; Bernier- Latmani, R.; Schofield, E. J.; Bargar, J. R.; Giammar, D. E. Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate. Geochim. Cosmochim. Acta 2009, 73 (20), 6065-6083.
- Senko, J. M.; Suflita, J. M.; Krumholz, L. R. Geochemical controls on microbial nitrate-dependent U(IV) oxidation. Geomicrobiol. J. 2005, 22 (7-8), 371-378.
- Ginder-Vogel, M.; Stewart, B.; Fendorf, S. Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite. Environ. Sci. Technol. 2010, 44 (1), 163-169.
- Sani, R. K.; Peyton, B. M.; Dohnalkova, A.; Amonette, J. E. Reoxidation of reduced uranium with iron(III) (hydr)oxides under sulfate-reducing conditions. Environ. Sci. Technol. 2005, 39 (7), 2059- 2066.
- Fredrickson, J. K.; Zachara, J. M.; Kennedy, D. W.; Liu, C.; Duff, M. C.; Hunter, D. B.; Dohnalkova, A. Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens. Geochim. Cosmochim. Acta 2002, 66 (18), 3247-3262.
- Liu, C. X.; Zachara, J. M.; Fredrickson, J. K.; Kennedy, D. W.; Dohnalkova, A. Modeling the inhibition of the bacterial reduction of U(VI) by β-MnO 2(s) . Environ. Sci. Technol. 2002, 36 (7), 1452-1459.
- Campbell, K. M.; Veeramani, H.; Urich, K. U.; Blue, L. Y.; Giammar, D. E.; Bernier-Latmani, R.; Stubbs, J. E.; Suvorova, E.; Yabusaki, S.; Lezama-Pacheco, J. S.; Mehta, A.; Long, P. E.; Bargar, J. R. Oxidative dissolution of biogenic uraninite in groundwater at Old Rifle, CO. Environ. Sci. Technol. 2011, 45 (20), 8748-8754.
- Zachara, J. M.; Long, P. E.; Bargar, J.; Davis, J. A.; Fox, P.; Fredrickson, J. K.; Freshley, M. D.; Konopka, A. E.; Liu, C.; McKinley, J. P.; Rockhold, M. L.; Williams, K. H.; Yabusaki, S. B. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone. J. Contam. Hydrol. 2013, 147 (0), 45-72.
- Borch, T.; Kretzschmar, R.; Kappler, A.; Van Cappellen, P.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 2010, 44 (1), 15-23.
- Morgan, J. J. Kinetics of reaction between O 2 and Mn(II) species in aqueous solutions. Geochim. Cosmochim. Acta 2005, 69 (1), 35-48.
- Tebo, B. M.; Bargar, J. R.; Clement, B. G.; Dick, G. J.; Murray, K. J.; Parker, D.; Verity, R.; Webb, S. M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004, 32 (1), 287-328.
- Clement, B. G.; Luther, G. W.; Tebo, B. M. Rapid, oxygen- dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone. Geochim. Cosmochim. Acta 2009, 73 (7), 1878-1889.
- Chinni, S.; Anderson, C. R.; Ulrich, K. U.; Giammar, D. E.; Tebo, B. M. Indirect UO 2 oxidation by Mn(II)-oxidizing spores of Bacillus sp Strain SG-1 and the effect of U and Mn concentrations. Environ. Sci. Technol. 2008, 42 (23), 8709-8714.
- Wang, Z.; Lee, S.-W.; Kapoor, P.; Tebo, B. M.; Giammar, D. E. Uraninite oxidation and dissolution induced by manganese oxide: A redox reaction between two insoluble minerals. Geochim. Cosmochim. Acta 2013, 100 (1), 24-40.
- Plathe, K. L.; Lee, S.-W.; Tebo, B. M.; Bargar, J. R.; Bernier- Latmani, R. Impact of microbial Mn oxidation on the remobilization of bioreduced U(IV). Environ. Sci. Technol. 2013, 47 (8), 3606-3613.
- Duckworth, O. W.; Bargar, J. R.; Sposito, G. Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores. BioMetals 2009, 22 (4), 605-613.
- Johnson, K. S. Manganese redox chemistry revisited. Science 2006, 313 (5795), 1896-1897.
- Webb, S. M.; Dick, G. J.; Bargar, J. R.; Tebo, B. M. Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Proc. Natl. Acad. Sci., U. S. A. 2005, 102 (15), 5558-5563.
- Duckworth, O. W.; Sposito, G. Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(II) promoted by desferriox- amine B. Environ. Sci. Technol. 2005, 39 (16), 6037-6044.
- Butterfield, C. N.; Soldatova, A. V.; Lee, S.-W.; Spiro, T. G.; Tebo, B. M. Mn(II,III) oxidation and MnO 2 mineralization by an expressed bacterial multicopper oxidase. Proc. Natl. Acad. Sci., U. S. A. 2013, 110 (29), 11731-11735.
- Ehrlich, H. L. Manganese oxide reduction as a form of anaerobic respiration. Geomicrobiol. J. 1987, 5 (3-4), 423-431.
- Lin, H.; Szeinbaum, N. H.; DiChristina, T. J.; Taillefert, M. Microbial Mn(IV) reduction requires an initial one-electron reductive solubilization step. Geochim. Cosmochim. Acta 2012, 99 (0), 179-192.
- Wang, Y.; Stone, A. T. Phosphonate-and carboxylate-based chelating agents that solubilize (hydr)oxide-bound Mn III . Environ. Sci. Technol. 2008, 42 (12), 4397-4403.
- Duckworth, O. W.; Sposito, G. Siderophore-manganese(III) interactions. II. Manganite dissolution promoted by desferrioxamine B. Environ. Sci. Technol. 2005, 39 (16), 6045-6051.
- Penã, J.; Duckworth, O. W.; Bargar, J. R.; Sposito, G. Dissolution of hausmannite (Mn 3 O 4 ) in the presence of the trihydroxamate siderophore desferrioxamine B. Geochim. Cosmochim. Acta 2007, 71 (23), 5661-5671.
- Gunary, D. Pyrophosphate in soil; Some physico-chemical aspects. Nature 1966, 210 (5042), 1297-1298.
- Harrington, J. M.; Parker, D. L.; Bargar, J. R.; Jarzecki, A. A.; Tebo, B. M.; Sposito, G.; Duckworth, O. W. Structural dependence of Mn complexation by siderophores: Donor group dependence on complex stability and reactivity. Geochim. Cosmochim. Acta 2012, 88 (0), 106-119.
- Trouwborst, R. E.; Clement, B. G.; Tebo, B. M.; Glazer, B. T.; Luther, G. W. Soluble Mn(III) in suboxic zones. Science 2006, 313 (5795), 1955-1957.
- Madison, A. S.; Tebo, B. M.; Luther, G. W. Simultaneous determination of soluble manganese(III), manganese(II) and total manganese in natural (pore)waters. Talanta 2011, 84 (2), 374-381.
- Madison, A. S.; Tebo, B. M.; Mucci, A.; Sundby, B.; Luther, G.
- W., III Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 2013, 341 (6148), 875-878.
- Weaver, R. M.; Hochella, M. F. The reactivity of seven Mn- oxides with Cr 3+ aq: A comparative analysis of a complex, environmentally important redox reaction. Am. Mineral. 2003, 88 (11-12), 2016-2027.
- Nico, P. S.; Zasoski, R. J. Importance of Mn(III) availability on the rate of Cr(III) oxidation on δ-MnO 2 . Environ. Sci. Technol. 2000, 34 (16), 3363-3367.
- Nico, P. S.; Zasoski, R. J. Mn(III) center availability as a rate controlling factor in the oxidation of phenol and sulfide on δ-MnO 2 . Environ. Sci. Technol. 2001, 35 (16), 3338-3343.
- Chen, W.-R.; Liu, C.; Boyd, S. A.; Teppen, B. J.; Li, H. Reduction of carbadox mediated by reaction of Mn(III) with oxalic acid. Environ. Sci. Technol. 2013, 47 (3), 1357-1364.
- Lafferty, B. J.; Ginder-Vogel, M.; Zhu, M. Q.; Livi, K. J. T.; Sparks, D. L. Arsenite oxidation by a poorly crystalline manganese- oxide. 2. Results from X-ray absorption spectroscopy and X-ray diffraction. Environ. Sci. Technol. 2010, 44 (22), 8467-8472.
- Nesbitt, H. W.; Canning, G. W.; Bancroft, G. M. XPS study of reductive dissolution of 7Å-birnessite by H 3 AsO 3 , with constraints on reaction mechanism. Geochim. Cosmochim. Acta 1998, 62 (12), 2097- 2110.
- Kostka, J. E.; Luther, G. W.; Nealson, K. H. Chemical and biological reduction of Mn(III)-pyrophosphate complexes -Potential importance of dissolved Mn(III) as an environmental oxidant. Geochim. Cosmochim. Acta 1995, 59 (5), 885-894.
- Klewicki, J. K.; Morgan, J. J. Kinetic behavior of Mn(III) complexes of pyrophosphate, EDTA, and citrate. Environ. Sci. Technol. 1998, 32 (19), 2916-2922.
- Rophael, M. Kinetics of the oxidation of chromium (III) by manganese (III) in sulphuric acid media. Chem. Scr. 1982, 20, 171- 173.
- Murray, K. J.; Tebo, B. M. Cr(III) is indirectly oxidized by the Mn(II)-oxidizing bacterium Bacillus sp strain SG-1. Environ. Sci. Technol. 2007, 41 (2), 528-533.
- Weaver, R. M.; Hochella, M. F., Jr.; Ilton, E. S. Dynamic processes occurring at the Cr III aq-Manganite (γ-MnOOH) interface: Simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution. Geochim. Cosmochim. Acta 2002, 66 (23), 4119-4132.
- Perez-Benito, J. F.; Arias, C. The pyrophosphate-assisted reduction of chromium(VI) by manganese(II) and its reverse reaction. New J. Chem. 2001, 25 (11), 1438-1446.
- Turner, B. L.; Newman, S. Phosphorus cycling in wetland soils. J. Environ. Qual. 2005, 34 (5), 1921-1929.
- Bi, Y.; Hesterberg, D. L.; Duckworth, O. W. Siderophore- promoted dissolution of cobalt from hydroxide minerals. Geochim. Cosmochim. Acta 2010, 74 (10), 2915-2925.
- Faulkner, K. M.; Stevens, R. D.; Fridovich, I. Characterization of Mn(III) complexes of linear and cyclic desferrioxamines as mimics of superoxide dismutase activity. Arch. Biochem. Biophys. 1994, 310 (2), 341-346.
- McElroy, W. D.; Glass, B. Phosphorus Metabolism; Johns Hopkins University Press: Baltimore, MD, 1951.
- Wazer, J. R. V.; Campanella, D. A. Structure and properties of the condensed phosphates. IV. Complex ion formation in poly- phosphate solutions. J. Am. Chem. Soc. 1950, 72 (2), 655-663.
- Schecher, W. D.; McAvoy, D. C. MINEQL+: A chemical equilibrium modeling system, version 4.6; Environmental Research Software: Hallowell, ME, 2007.
- Frazier, S. W.; Kretzschmar, R.; Kraemer, S. M. Bacterial siderophores promote dissolution of UO 2 under reducing conditions. Environ. Sci. Technol. 2005, 39 (15), 5709-5715.
- Duckworth, O. W.; Bargar, J. R.; Sposito, G. Quantitative structure-activity relationships for aqueous metal-siderophore complexes. Environ. Sci. Technol. 2009, 43 (2), 343-349.
- Stewart, B. D.; Girardot, C.; Spycher, N.; Sani, R. K.; Peyton, B. M. Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) (hydr)oxides. Environ. Sci. Technol. 2013, 47 (1), 364-371.
- Ginder-Vogel, M.; Criddle, C. S.; Fendorf, S. Thermodynamic constraints on the oxidation of biogenic UO 2 by Fe(III) (hydr)oxides. Environ. Sci. Technol. 2006, 40 (11), 3544-3550.
- Gordienko, V. I.; Sidorenko, V. I.; Mikhailyuk, Y. I. Amperometric investigation of Mn(III) pyrophosphate complexes. Russ. J. Inorg. Chem. 1970, 15, 1241-1244.
- Ciavatta, L.; Palombari, R. On the equilibria of complex formation between manganese(III) and pyrophosphate ions. Gazz. Chim. Ital. 1983, 113, 557-552.
- Jiang, J.; Pang, S. Y.; Ma, J. Role of ligands in permanganate oxidation of organics. Environ. Sci. Technol. 2010, 44 (11), 4270-4275.
- Kolthoff, I.; Watters, J. Polarographic determination of manganese as tridihydrogen pyrophosphatomanganiate. Ind. Eng. Chem. Anal. Ed. 1943, 15 (1), 8-13.
- Taube, H. Catalysis by manganic ion of the reaction of bromine and oxalic acid. Stability of manganic ion complexes. J. Am. Chem. Soc. 1948, 70 (11), 3928-3935.
- Jiang, J.; Pang, S.-Y.; Ma, J.; Liu, H. Oxidation of phenolic endocrine disrupting chemicals by potassium permanganate in synthetic and real waters. Environ. Sci. Technol. 2011, 46 (3), 1774- 1781.
- Cerrato, J. M.; Ashner, M. N.; Alessi, D. S.; Lezama Pacheco, J. S.; Bernier-Latmani, R.; Bargar, J.; Giammar, D. E. Relative reactivity of biogenic and chemogenic uraninite and biogenic non-crystalline U(IV). Environ. Sci. Technol. 2013, 47 (17), 9756-9763.
- Wang, Z.; Lee, S.-W.; Catalano, J. G.; Lezama-Pacheco, J. S.; Bargar, J. R.; Tebo, B. M.; Giammar, D. E. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling. Environ. Sci. Technol. 2013, 47 (2), 850-858.