Employing chunk size adaptation to overcome concept drift
2022, JUCS - Journal of Universal Computer Science
https://doi.org/10.3897/JUCS.80735Abstract
Modern analytical systems must process streaming data and correctly respond to data distribution changes. The phenomenon of changes in data distributions is called concept drift, and it may harm the quality of the used models. Additionally, the possibility of concept drift appearance causes that the used algorithms must be ready for the continuous adaptation of the model to the changing data distributions. This work focuses on non-stationary data stream classification, where a classifier ensemble is used. To keep the ensemble model up to date, the new base classifiers are trained on the incoming data blocks and added to the ensemble while, at the same time, outdated models are removed from the ensemble. One of the problems with this type of model is the fast reaction to changes in data distributions. We propose the new Chunk Adaptive Restoration framework that can be adapted to any block-based data stream classification algorithm. The proposed algorithm adjusts the data chunk size i...
References (20)
- Baena-Garcıa et al., 2006] Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., and Morales-Bueno, R. (2006). Early drift detection method. In Fourth international workshop on knowledge discovery from data streams, volume 6, pages 77-86.
- Bifet et al., 2018] Bifet, A., Gavald, R., Holmes, G., and Pfahringer, B. (2018). Machine Learn- ing for Data Streams: With Practical Examples in MOA. The MIT Press. [Bifet and Gavaldà, 2007] Bifet, A. and Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing. volume 7. [Bifet et al., 2010] Bifet, A., Holmes, G., Kirkby, R., and Pfahringer, B. (2010). Moa: Massive online analysis. J. Mach. Learn. Res., 11:1601-1604.
- Bifet et al., 2009] Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., and Gavaldà, R. (2009). New ensemble methods for evolving data streams. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, pages 139-148, New York, NY, USA. ACM. [Blanco et al., 2015] Blanco, I. I. F., del Campo-Avila, J., Ramos-Jimenez, G., Bueno, R. M., Diaz, A. A. O., and Mota, Y. C. (2015). Online and non-parametric drift detection methods based on hoeffding's bounds. IEEE Trans. Knowl. Data Eng., 27(3):810-823.
- Brzeziński and Stefanowski, 2011] Brzeziński, D. and Stefanowski, J. (2011). Accuracy updated ensemble for data streams with concept drift. In Corchado, E., Kurzyński, M., and Woźniak, M., editors, Hybrid Artificial Intelligent Systems, pages 155-163, Berlin, Heidelberg. Springer Berlin Heidelberg. [Duda et al., 2001] Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. Wiley, New York, 2. edition. [Gama et al., 2004] Gama, J., Medas, P., Castillo, G., and Rodrigues, P. (2004). Learning with drift detection. In In SBIA Brazilian Symposium on Artificial Intelligence, pages 286-295. Springer Verlag. [Gustafsson, 2000] Gustafsson, F. (2000). Adaptive Filtering and Change Detection. Wiley. [Harvey et al., 2021] Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., Peacock, S. J., Robertson, D. L., and Consortium, C.-. G. U. C.-U. (2021). Sars-cov-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 19(7):409-424.
- Jackowski, 2014] Jackowski, K. (2014). Fixed-size ensemble classifier system evolutionar- ily adapted to a recurring context with an unlimited pool of classifiers. Pattern Analysis and Applications, 17(4):709-724.
- Joao et al., 2014] Joao, G., Žliobaite, Albert, B., Mykola, P., and Abdelhamid, B. (2014). A survey on concept drift adaptation. 46(4).
- Junsawang et al., 2019] Junsawang, P., Phimoltares, S., and Lursinsap, C. (2019). Streaming chunk incremental learning for class-wise data stream classification with fast learning speed and low structural complexity. PloS one, 14(9):e0220624.
- Katakis et al., 2010] Katakis, I., Tsoumakas, G., and Vlahavas, I. (2010). Tracking recurring contexts using ensemble classifiers: An application to email filtering. Knowledge and Information Systems, 22:371-391.
- Krawczyk et al., 2017] Krawczyk, B. et al. (2017). Ensemble learning for data stream analysis: A survey. Inf. Fusion, 37:132 -156.
- Krempl et al., 2014] Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V., Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M., and Stefanowski, J. (2014). Open challenges for data stream mining research. SIGKDD Explor. Newsl., 16(1):1-10. [Ksieniewicz and Zyblewski, 2020] Ksieniewicz, P. and Zyblewski, P. (2020). stream- learn-open-source python library for difficult data stream batch analysis. arXiv preprint arXiv:2001.11077.
- Kuncheva, 2004] Kuncheva, L. I. (2004). Classifier ensembles for changing environments. In Roli, F., Kittler, J., and Windeatt, T., editors, Multiple Classifier Systems, 5th International Workshop, MCS 2004, Cagliari, Italy, June 9-11, 2004, Proceedings, volume 3077 of Lecture Notes in Computer Science, pages 1-15. Springer. [Lazarescu et al., 2004] Lazarescu, M. M., Venkatesh, S., and Bui, H. H. (2004). Using multiple windows to track concept drift. Intell. Data Anal., 8(1):29-59.
- Liu et al., 2017] Liu, N., Zhu, W., Liao, B., and Ren, S. (2017). Weighted ensemble with dynamical chunk size for imbalanced data streams in nonstationary environment. [Lu et al., 2020] Lu, Y., Cheung, Y.-M., and Yan Tang, Y. (2020). Adaptive chunk-based dy- namic weighted majority for imbalanced data streams with concept drift. IEEE Transactions on Neural Networks and Learning Systems, 31(8):2764-2778.
- Oza and Tumer, 2008] Oza, N. C. and Tumer, K. (2008). Classifier ensembles: Select real-world applications. Inf. Fusion, 9(1):4-20.
- Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.
- Raudys, 2014] Raudys, S. (2014). Statistical and Neural Classifiers: An Integrated Approach to Design. Springer Publishing Company, Incorporated. [Rodríguez and Kuncheva, 2008] Rodríguez, J. J. and Kuncheva, L. I. (2008). Combining online classification approaches for changing environments. In Proceedings of the 2008 Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, SSPR & SPR '08, pages 520-529, Berlin, Heidelberg. Springer-Verlag. [Shaker and Hüllermeier, 2015] Shaker, A. and Hüllermeier, E. (2015). Recovery analysis for adaptive learning from non-stationary data streams: Experimental design and case study. Neuro- computing, 150:250-264.
- Sobolewski and Wozniak, 2013] Sobolewski, P. and Wozniak, M. (2013). Concept drift detec- tion and model selection with simulated recurrence and ensembles of statistical detectors. Journal of Universal Computer Science, 19(4):462-483.
- Souza et al., 2020] Souza, V. M. A., Reis, D. M., Maletzke, A. G., and Batista, G. E. A. P. A. (2020). Challenges in benchmarking stream learning algorithms with real-world data. Data Mining and Knowledge Discovery, pages 1-54.
- Street and Kim, 2001] Street, N. and Kim, Y. (2001). A streaming ensemble algorithm (sea) for large-scale classification. pages 377-382. [w4k2, 2021] w4k2 (2021). Chunk adaptive restoration. https://github.com/w4k2/ chunk-adaptive-restoration.
- Wang et al., 2003] Wang, H., Fan, W., Yu, P. S., and Han, J. (2003). Mining concept-drifting data streams using ensemble classifiers. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03, page 226-235, New York, NY, USA. Association for Computing Machinery. [Widmer and Kubat, 1993] Widmer, G. and Kubat, M. (1993). Effective learning in dynamic environments by explicit context tracking. In Brazdil, P., editor, Machine Learning: ECML-93, volume 667 of Lecture Notes in Computer Science, pages 227-243. Springer Berlin Heidelberg. [Widmer and Kubat, 1996] Widmer, G. and Kubat, M. (1996). Learning in the presence of concept drift and hidden context. Machine Learning, 23:69-101.
- Woźniak et al., 2013] Woźniak, M., Kasprzak, A., and Cal, P. (2013). Weighted aging classifier ensemble for the incremental drifted data streams. In Larsen, H. L., Martin-Bautista, M. J., Vila, M. A., Andreasen, T., and Christiansen, H., editors, Flexible Query Answering Systems, pages 579-588, Berlin, Heidelberg. Springer Berlin Heidelberg. [Zliobaite et al., 2015] Zliobaite, I., Budka, M., and Stahl, F. T. (2015). Towards cost-sensitive adaptation: When is it worth updating your predictive model? Neurocomputing, 150:240-249.