Academia.eduAcademia.edu

Outline

Perspectives for self-driving labs in synthetic biology

2022, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.2210.09085

Abstract

Self-driving labs (SDLs) combine fully automated experiments with artificial intelligence (AI) that decides the next set of experiments. Taken to their ultimate expression, SDLs could usher a new paradigm of scientific research, where the world is probed, interpreted, and explained by machines for human benefit. While there are functioning SDLs in the fields of chemistry and materials science, we contend that synthetic biology provides a unique opportunity since the genome provides a single target for affecting the incredibly wide repertoire of biological cell behavior. However, the level of investment required for the creation of biological SDLs is only warranted if directed towards solving difficult and enabling biological questions. Here, we discuss challenges and opportunities in creating SDLs for synthetic biology.

References (62)

  1. Granda et al): A great example of the potential of SDLs, showing how a robot is able to systematically explore chemical space and successfully predict reactivity.
  2. Burger et al): An inspiring use of a mobile robotic arm to automate the researcher rather than the instruments, opening the transition to SDLs for any traditional lab.
  3. Cai et al): An informative review on how to embed prior knowledge in AI, in this case for fluid dynamics in the form of PINNs ( Physics-Informed Neural Networks). Similar approaches would be needed for biology.
  4. Guimera et al): A stimulating demonstration of the power of "machine scientists", able to extract closed mathematical models automatically out of data.
  5. Rienzo et al): This paper demonstrates the use of microfluidics and automated cell manipulation through light for synthetic biology, providing a promising platform for SDLs.
  6. Fuller et al): A very interesting report on the possibilities created by embedding single molecules in electronic chips. Special interest:
  7. King et al): Adam is the first published example of a closed-loop system that designs and executes experiments to test inferred hypotheses. A classic well before SDLs became of widespread interest.
  8. Williams et al): Eve constitutes an outstanding example of the use of SDLs to alleviate the large cost of drug discovery.
  9. Karr et al): One of the first examples of a whole-cell model, accounting for all annotated gene functions in Mycoplasma genitalium, and validated against a broad range of data.
  10. Jian et al): Good introduction to digital twins, and how they are becoming an industry staple.
  11. Gach et al): A nice demonstration of what microfluidics can achieve in terms of automating synthetic biology protocols.
  12. Lawson et al): Interesting review on the current and possible applications of AI in metabolic engineering and synthetic biology. Bibliography
  13. Häse F, Roch LM, Aspuru-Guzik A. Next-Generation Experimentation with Self-Driving Laboratories. Trends in Chemistry. 2019;1: 282-291. doi:10.1016/j.trechm.2019.02.007
  14. Soldatov MA, Butova VV, Pashkov D, Butakova MA, Medvedev PV, Chernov AV, et al. Self-Driving Laboratories for Development of New Functional Materials and Optimizing Known Reactions. Nanomaterials (Basel). 2021;11. doi:10.3390/nano11030619
  15. Bennett JA, Abolhasani M. Autonomous chemical science and engineering enabled by self-driving laboratories. Curr Opin Chem Eng. 2022;36: 100831. doi:10.1016/j.coche.2022.100831
  16. Beal J, Rogers M. Levels of autonomy in synthetic biology engineering. Mol Syst Biol. 2020;16: e10019. doi:10.15252/msb.202010019
  17. Vrana J, de Lange O, Yang Y, Newman G, Saleem A, Miller A, et al. Aquarium: open-source laboratory software for design, execution and data management. Synth Biol (Oxf). 2021;6: ysab006. doi:10.1093/synbio/ysab006
  18. King RD, Whelan KE, Jones FM, Reiser PGK, Bryant CH, Muggleton SH, et al. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature. 2004;427: 247-252. doi:10.1038/nature02236
  19. Williams K, Bilsland E, Sparkes A, Aubrey W, Young M, Soldatova LN, et al. Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases. J R Soc Interface. 2015;12: 20141289. doi:10.1098/rsif.2014.1289
  20. Granda JM, Donina L, Dragone V, Long D-L, Cronin L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature. 2018;559: 377-381. doi:10.1038/s41586-018-0307-8
  21. Christensen M, Yunker LPE, Adedeji F, Häse F, Roch LM, Gensch T, et al. Data-science driven autonomous process optimization. Commun Chem. 2021;4: 112. doi:10.1038/s42004-021-00550-x
  22. Wang L, Karadaghi LR, Brutchey RL, Malmstadt N. Self-optimizing parallel millifluidic reactor for scaling nanoparticle synthesis. Chem Commun. 2020;56: 3745-3748. doi:10.1039/d0cc00064g
  23. MacLeod BP, Parlane FGL, Morrissey TD, Häse F, Roch LM, Dettelbach KE, et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci Adv. 2020;6: eaaz8867. doi:10.1126/sciadv.aaz8867
  24. MacLeod BP, Parlane FGL, Rupnow CC, Dettelbach KE, Elliott MS, Morrissey TD, et al. A self-driving laboratory advances the Pareto front for material properties. Nat Commun. 2022;13: 995. doi:10.1038/s41467-022-28580-6
  25. Shimizu R, Kobayashi S, Watanabe Y, Ando Y, Hitosugi T. Autonomous materials synthesis by machine learning and robotics. APL Mater. 2020;8: 111110. doi:10.1063/5.0020370
  26. Gongora AE, Xu B, Perry W, Okoye C, Riley P, Reyes KG, et al. A Bayesian experimental autonomous researcher for mechanical design. Sci Adv. 2020;6: eaaz1708. doi:10.1126/sciadv.aaz1708
  27. Rooney MB, MacLeod BP, Oldford R, Thompson ZJ, White KL, Tungjunyatham J, et al. A self-driving laboratory designed to accelerate the discovery of adhesive materials. Digital Discovery. 2022. doi:10.1039/D2DD00029F
  28. Deneault JR, Chang J, Myung J, Hooper D, Armstrong A, Pitt M, et al. Toward autonomous additive manufacturing: Bayesian optimization on a 3D printer. MRS Bull. 2021;46: 566-575. doi:10.1557/s43577-021-00051-1
  29. Dave A, Mitchell J, Kandasamy K, Wang H, Burke S, Paria B, et al. Autonomous Discovery of Battery Electrolytes with Robotic Experimentation and Machine Learning. Cell Reports Physical Science. 2020;1: 100264. doi:10.1016/j.xcrp.2020.100264
  30. Burger B, Maffettone PM, Gusev VV, Aitchison CM, Bai Y, Wang X, et al. A mobile robotic chemist. Nature. 2020;583: 237-241. doi:10.1038/s41586-020-2442-2
  31. Si T, Chao R, Min Y, Wu Y, Ren W, Zhao H. Automated multiplex genome-scale engineering in yeast. Nat Commun. 2017;8: 15187. doi:10.1038/ncomms15187
  32. HamediRad M, Chao R, Weisberg S, Lian J, Sinha S, Zhao H. Towards a fully automated algorithm driven platform for biosystems design. Nat Commun. 2019;10: 5150. doi:10.1038/s41467-019-13189-z
  33. Kanda GN, Tsuzuki T, Terada M, Sakai N, Motozawa N, Masuda T, et al. Robotic search for optimal cell culture in regenerative medicine. eLife. 2022;11. doi:10.7554/eLife.77007
  34. Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361: 866-869. doi:10.1126/science.aat5011
  35. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596: 583-589. doi:10.1038/s41586-021-03819-2
  36. Yan Q, Pfleger BF. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng. 2020;58: 35-46. doi:10.1016/j.ymben.2019.04.009
  37. Herrgård MJ, Covert MW, Palsson BØ. Reconstruction of microbial transcriptional regulatory networks. Curr Opin Biotechnol. 2004;15: 70-77. doi:10.1016/j.copbio.2003.11.002
  38. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, et al. A whole-cell computational model predicts phenotype from genotype. Cell. 2012;150: 389-401. doi:10.1016/j.cell.2012.05.044
  39. Macklin DN, Ahn-Horst TA, Choi H, Ruggero NA, Carrera J, Mason JC, et al. Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Science. 2020;369. doi:10.1126/science.aav3751
  40. Lawson CE, Harcombe WR, Hatzenpichler R, Lindemann SR, Löffler FE, O'Malley MA, et al. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol. 2019;17: 725-741. doi:10.1038/s41579-019-0255-9
  41. Lauren, Yang J, Scott R, Qutub A, Martin H, Berrios D, et al. Beyond Low Earth Orbit: Biological Research, Artificial Intelligence, and Self-Driving Labs.
  42. Jiang Y, Yin S, Li K, Luo H, Kaynak O. Industrial applications of digital twins. Philos Transact A Math Phys Eng Sci. 2021;379: 20200360. doi:10.1098/rsta.2020.0360
  43. Neves M, Leser U. Question answering for biology. Methods. 2015;74: 36-46. doi:10.1016/j.ymeth.2014.10.023
  44. Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE. Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mech Sin. 2021;37: 1727-1738. doi:10.1007/s10409-021-01148-1
  45. Liu Z, Tegmark M. Machine Learning Conservation Laws from Trajectories. Phys Rev Lett. 2021;126: 180604. doi:10.1103/PhysRevLett.126.180604
  46. Guimerà R, Reichardt I, Aguilar-Mogas A, Massucci FA, Miranda M, Pallarès J, et al. A Bayesian machine scientist to aid in the solution of challenging scientific problems. Sci Adv. 2020;6: eaav6971. doi:10.1126/sciadv.aav6971
  47. Garcez A d'Avila, Lamb LC. Neurosymbolic AI: The 3rd Wave. arXiv. 2020. doi:10.48550/arxiv.2012.05876
  48. Arnold C. Cloud labs: where robots do the research. Nature. 2022;606: 612-613. doi:10.1038/d41586-022-01618-x
  49. Lee C-C, Snyder TM, Quake SR. A microfluidic oligonucleotide synthesizer. Nucleic Acids Res. 2010;38: 2514-2521. doi:10.1093/nar/gkq092
  50. Gach PC, Shih SCC, Sustarich J, Keasling JD, Hillson NJ, Adams PD, et al. A droplet microfluidic platform for automating genetic engineering. ACS Synth Biol. 2016;5: 426-433. doi:10.1021/acssynbio.6b00011
  51. Iwai K, Wehrs M, Garber M, Sustarich J, Washburn L, Costello Z, et al. Scalable and automated CRISPR-based strain engineering using droplet microfluidics. Microsyst Nanoeng. 2022;8: 31. doi:10.1038/s41378-022-00357-3
  52. Hori Y, Kantak C, Murray RM, Abate AR. Cell-free extract based optimization of biomolecular circuits with droplet microfluidics. Lab Chip. 2017;17: 3037-3042. doi:10.1039/c7lc00552k
  53. Iwai K, Ando D, Kim PW, Gach PC, Raje M, Duncomb TA, et al. Automated flow-based/digital microfluidic platform integrated with onsite electroporation process for multiplex genetic engineering applications. 2018 IEEE Micro Electro Mechanical Systems (MEMS). IEEE; 2018. pp. 1229-1232. doi:10.1109/MEMSYS.2018.8346785
  54. Heinemann J, Deng K, Shih SCC, Gao J, Adams PD, Singh AK, et al. On-chip integration of droplet microfluidics and nanostructure-initiator mass spectrometry for enzyme screening. Lab Chip. 2017;17: 323-331. doi:10.1039/c6lc01182a
  55. Fuller CW, Padayatti PS, Abderrahim H, Adamiak L, Alagar N, Ananthapadmanabhan N, et al. Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. Proc Natl Acad Sci USA. 2022;119. doi:10.1073/pnas.2112812119
  56. Cortese AJ, Smart CL, Wang T, Reynolds MF, Norris SL, Ji Y, et al. Microscopic sensors using optical wireless integrated circuits. Proc Natl Acad Sci USA. 2020;117: 9173-9179. doi:10.1073/pnas.1919677117
  57. Nie L, Nusantara AC, Damle VG, Sharmin R, Evans EPP, Hemelaar SR, et al. Quantum monitoring of cellular metabolic activities in single mitochondria. Sci Adv. 2021;7. doi:10.1126/sciadv.abf0573
  58. Wegner SA, Barocio-Galindo RM, Avalos JL. The bright frontiers of microbial metabolic optogenetics. Curr Opin Chem Biol. 2022;71: 102207. doi:10.1016/j.cbpa.2022.102207
  59. Rienzo M, Lin K-C, Mobilia KC, Sackmann EK, Kurz V, Navidi AH, et al. High-throughput optofluidic screening for improved microbial cell factories via real-time micron-scale productivity monitoring. Lab Chip. 2021;21: 2901-2912. doi:10.1039/d1lc00389e
  60. Lawson CE, Martí JM, Radivojevic T, Jonnalagadda SVR, Gentz R, Hillson NJ, et al. Machine learning for metabolic engineering: A review. Metab Eng. 2021;63: 34-60. doi:10.1016/j.ymben.2020.10.005
  61. On the Opportunities and Risks of Foundation Models. 2021 [cited 15 Aug 2022]. Available: https://fsi.stanford.edu/publication/opportunities-and-risks-foundation-models
  62. Eslami M, Adler A, Caceres RS, Dunn JG, Kelley-Loughnane N, Varaljay VA, et al. Artificial intelligence for synthetic biology. Commun ACM. 2022;65: 88-97. doi:10.1145/3500922