Physical Human Activity Recognition Using Wearable Sensors
2015, Sensors
https://doi.org/10.3390/S151229858Abstract
This paper presents a review of different classification techniques used to recognize human activities from wearable inertial sensor data. Three inertial sensor units were used in this study and were worn by healthy subjects at key points of upper/lower body limbs (chest, right thigh and left ankle). Three main steps describe the activity recognition process: sensors' placement, data pre-processing and data classification. Four supervised classification techniques namely, k-Nearest Neighbor (k-NN), Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and Random Forest (RF) as well as three unsupervised classification techniques namely, k-Means, Gaussian mixture models (GMM) and Hidden Markov Model (HMM), are compared in terms of correct classification rate, F-measure, recall, precision, and specificity. Raw data and extracted features are used separately as inputs of each classifier. The feature selection is performed using a wrapper approach based on the RF algorithm. Based on our experiments, the results obtained show that the k-NN classifier provides the best performance compared to other supervised classification algorithms, whereas the HMM classifier is the one that gives the best results among unsupervised classification algorithms. This comparison highlights which approach gives better performance in both supervised and unsupervised contexts. It should be noted that the obtained results are limited to the context of this study, which concerns the classification of the main daily living human activities using three wearable accelerometers placed at the chest, right shank and left ankle of the subject.
References (95)
- Chan, M.; Estève, D.; Fourniols, J.-Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif. Intel. Med. 2012, 56, 137-156. [CrossRef] [PubMed]
- Teng, X.-F.; Zhang, Y.-T.; Poon, C.C.; Bonato, P. Wearable medical systems for p-health. IEEE Rev. Biomed. Eng. 2008, 1, 62-74. [CrossRef] [PubMed]
- Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.; Howard, D.; Meijer, K.; Crompton, R. Activity identification using body-mounted sensors-A review of classification techniques. Physiol. Meas. 2009, 30. [CrossRef] [PubMed]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9. [CrossRef] [PubMed]
- Altun, K.; Barshan, B.; Tunçel, O. Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognit. 2010, 43, 3605-3620. [CrossRef]
- Gill, T.; Keller, J.M.; Anderson, D.T.; Luke, R. A system for change detection and human recognition in voxel space using the Microsoft Kinect sensor. In Proceedings of the Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 11-13 October 2011.
- Chamroukhi, F.; Mohammed, S.; Trabelsi, D.; Oukhellou, L.; Amirat, Y. Joint segmentation of multivariate time series with hidden process regression for human activity recognition. Neurocomputing 2013, 120, 633-644. [CrossRef]
- Gao, L.; Bourke, A.; Nelson, J. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Med. Eng. Phys. 2014, 36, 779-785. [CrossRef] [PubMed]
- Chernbumroong, S.; Cang, S.; Atkins, A.; Yu, H. Elderly activities recognition and classification for applications in assisted living. Exp. Syst. Appl. 2013, 40, 1662-1674. [CrossRef]
- Altun, K.; Barshan, B. Human Activity Recognition Using Inertial/Magnetic Sensor Units. In Human Behavior Understanding; Springer: Berlin, Germany, 2010; pp. 38-51.
- McAdams, E.T.; Gehin, C.; Noury, N.; Ramon, C.; Nocua, R.; Massot, B.; Oliveira, A.; Dittmar, A.; Nugent, C.D.; McLaughlin, J. Biomedical Sensors for Ambient Assisted Living. In Advances in Biomedical Sensing, Measurements, Instrumentation and Systems; Springer: Berlin, Germany, 2010; pp. 240-262.
- Cleland, I.; Kikhia, B.; Nugent, C.; Boytsov, A.; Hallberg, J.; Synnes, K.; McClean, S.; Finlay, D. Optimal Placement of Accelerometers for the Detection of Everyday Activities. Sensors 2013, 13, 9183-9200. [CrossRef] [PubMed]
- Najafi, B.; Aminian, K.; Paraschiv-Ionescu, A.; Loew, F.; Bula, C.J.; Robert, P. Ambulatory system for human motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 2003, 50, 711-723. [CrossRef] [PubMed]
- Bonomi, A.G.; Goris, A.; Yin, B.; Westerterp, K.R. Detection of type, duration, and intensity of physical activity using an accelerometer. Med. Sci. Sports Exerc. 2009, 41, 1770-1777. [CrossRef] [PubMed]
- Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 156-167. [CrossRef] [PubMed]
- Yang, C.-C.; Hsu, Y.-L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10, 7772-7788. [CrossRef] [PubMed]
- Parkka, J.; Ermes, M.; Korpipaa, P.; Mantyjarvi, J.; Peltola, J.; Korhonen, I. Activity classification using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 119-128. [CrossRef] [PubMed]
- Mathie, M.; Celler, B.G.; Lovell, N.H.; Coster, A. Classification of basic daily movements using a triaxial accelerometer. Med. Biol. Eng. Comput. 2004, 42, 679-687. [CrossRef] [PubMed]
- Yeoh, W.-S.; Pek, I.; Yong, Y.-H.; Chen, X.; Waluyo, A.B. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors. In Proceedings of the Engineering in Medicine and Biology Society, 2008 EMBS 30th Annual International Conference of the IEEE, Vancouver, BC, USA, 20-25 August 2008; pp. 5184-5187.
- Yang, J.-Y.; Wang, J.-S.; Chen, Y.-P. Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers. Pattern Recog. Lett. 2008, 29, 2213-2220. [CrossRef]
- Pirttikangas, S.; Fujinami, K.; Nakajima, T. Feature Selection and Activity Recognition from Wearable Sensors. In Ubiquitous Computing Systems; Springer: Berlin, Germany, 2006; pp. 516-527.
- Olguın, D.O.; Pentland, A.S. Human activity recognition: Accuracy across common locations for wearable sensors. In Proceedings of 2006 10th IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11-14 October 2006.
- Lyons, G.; Culhane, K.; Hilton, D.; Grace, P.; Lyons, D. A description of an accelerometer-based mobility monitoring technique. Med. Eng. Phys. 2005, 27, 497-504. [CrossRef] [PubMed]
- Salarian, A.; Russmann, H.; Vingerhoets, F.J.; Burkhard, P.R.; Aminian, K. Ambulatory monitoring of physical activities in patients with Parkinson's disease. IEEE Trans. Biomed. Eng. 2007, 54, 2296-2299. [CrossRef] [PubMed]
- Gjoreski, H.; Lustrek, M.; Gams, M. Accelerometer placement for posture recognition and fall detection. In Proceedings of the 2011 7th International Conference on Intelligent Environments (IE), Nottingham, UK, 25-28 July 2011; pp. 47-54.
- Bayat, A.; Pomplun, M.; Tran, D.A. A Study on Human Activity Recognition Using Accelerometer Data from Smartphones. Proced. Comput. Sci. 2014, 34, 450-457. [CrossRef]
- Moncada-Torres, A.; Leuenberger, K.; Gonzenbach, R.; Luft, A.; Gassert, R. Activity classification based on inertial and barometric pressure sensors at different anatomical locations. Physiol. Meas. 2014, 35. [CrossRef] [PubMed]
- Gupta, P.; Dallas, T. Feature Selection and Activity Recognition System using a Single Tri-axial Accelerometer. IEEE Trans. Biomed. Eng. 2014, 61, 1780-1786. [CrossRef] [PubMed]
- Garcia-Ceja, E.; Brena, R.F.; Carrasco-Jimenez, J.C.; Garrido, L. Long-Term Activity Recognition from Wristwatch Accelerometer Data. Sensors 2014, 14, 22500-22524. [CrossRef] [PubMed]
- Massé, F.; Gonzenbach, R.R.; Arami, A.; Paraschiv-Ionescu, A.; Luft, A.R.; Aminian, K. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients. J. Neuroeng. Rehabil. 2015, 12. [CrossRef] [PubMed]
- Raj, A.; Subramanya, A.; Fox, D.; Bilmes, J. Rao-Blackwellized Particle Filters for Recognizing Activities and Spatial Context from Wearable Sensors. In Experimental Robotics; Springer: Berlin, Germany, 2008; pp. 211-221.
- Morillo, D.S.; Ojeda, J.L.R.; Foix, L.F.C.; Jiménez, A.L. An accelerometer-based device for sleep apnea screening. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 491-499. [CrossRef] [PubMed]
- Kuo, Y.-L.; Culhane, K.M.; Thomason, P.; Tirosh, O.; Baker, R. Measuring distance walked and step count in children with cerebral palsy: An evaluation of two portable activity monitors. Gait Posture 2009, 29, 304-310. [CrossRef] [PubMed]
- Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Age-related differences in walking stability. Age Ageing 2003, 32, 137-142. [CrossRef] [PubMed]
- Park, J.-H.; Kim, H.J.; Kang, S.-J. Validation of the AMP331 monitor for assessing energy expenditure of free-living physical activity. Res. Quart. Exerc. Sport 2006, 77, A40.
- Ronao, C.A.; Cho, S.-B. Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models. In Proceedings of the 2014 10th International Conference on Natural Computation (ICNC), Xiamen, China, 19-21 August 2014; pp. 681-686.
- Peetoom, K.K.; Lexis, M.A.; Joore, M.; Dirksen, C.D.; De Witte, L.P. Literature review on monitoring technologies and their outcomes in independently living elderly people. Disabil. Rehabil. Assist. Technol. 2014, 10, 271-294. [CrossRef] [PubMed]
- Farringdon, J.; Moore, A.J.; Tilbury, N.; Church, J.; Biemond, P.D. Wearable sensor badge and sensor jacket for context awareness. In Proceedings of the Third International Symposium on Wearable Computers, 1999 Digest of Papers, San Francisco, CA, USA, 18-19 October 1999; pp. 107-113.
- Bouten, C.V.; Koekkoek, K.T.; Verduin, M.; Kodde, R.; Janssen, J.D. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng. 1997, 44, 136-147. [CrossRef] [PubMed]
- Figo, D.; Diniz, P.C.; Ferreira, D.R.; Cardoso, J.M. Preprocessing techniques for context recognition from accelerometer data. Pers. Ubiquitous Comput. 2010, 14, 645-662. [CrossRef]
- Oppenheim, A.V.; Schafer, R.W.; Buck, J.R. Discrete-Time Signal Processing; Prentice-hall: Upper Saddle River, NJ, USA, 1989.
- Nham, B.; Siangliulue, K.; Yeung, S. Predicting Mode of Transport from Iphone Accelerometer Data; Technical Report; Standford University: Stanford, CA, USA, 2008.
- Ho, J.J.C. Interruptions: Using Activity Transitions to Trigger Proactive Messages. Master's Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, August 2004.
- Bao, L.; Intille, S.S. Activity Recognition from User-Annotated Acceleration Data. In Pervasive Computing; Springer: Berlin, Germany, 2004; pp. 1-17.
- Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.; Howard, D. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans. Biomed. Eng. 2009, 56, 871-879. [CrossRef] [PubMed]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157-1182.
- Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17, 491-502.
- Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intel. 1997, 97, 273-324. [CrossRef]
- Das, S. Filters, wrappers and a boosting-based hybrid for feature selection. In Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001), Williamstown, MA, USA, 28 June-1 July 2001; pp. 74-81.
- Zhang, M.; Sawchuk, A.A. A feature selection-based framework for human activity recognition using wearable multimodal sensors. In Proceedings of the 6th International Conference on Body Area Networks: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Beijing, China, 7-8 November 2011; pp. 92-98.
- Fish, B.; Khan, A.; Chehade, N.H.; Chien, C.; Pottie, G. Feature selection based on mutual information for human activity recognition. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25-30 March 2012; pp. 1729-1732.
- Chau, T. A review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods. Gait Posture 2001, 13, 49-66. [CrossRef]
- Martínez, A.M.; Kak, A.C. Pca versus lda. IEEE Trans. Pattern Anal. Mach. Intel. 2001, 23, 228-233. [CrossRef]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: Malden, MA, USA, 1999.
- Krause, A.; Siewiorek, D.P.; Smailagic, A.; Farringdon, J. Unsupervised, dynamic identification of physiological and activity context in wearable computing. In Proceedings of the 2012 16th International Symposium on Wearable Computers: IEEE Computer Society, White Plains, NY, USA, 21-23 October 2003; p. 88.
- Hu ỳnh, T.; Schiele, B. Unsupervised Discovery of Structure in Activity Data Using Multiple Eigenspaces. In Location-and Context-Awareness; Springer: Berlin, Germany, 2006; pp. 151-167.
- Webb, A.R. Statistical Pattern Recognition; John Wiley & Sons: Malden, MA, USA, 2003.
- Theodoridis, S.; Pikrakis, A.; Koutroumbas, K.; Cavouras, D. Introduction to Pattern Recognition: A Matlab Approach; Academic Press: Waltham, NA, USA, 2010.
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: Berlin, Germany, 2000.
- Rabiner, L. A tutorial on hidden Markov models and selected applications in speech recognition. IEEE Proc. 1989, 77, 257-286. [CrossRef]
- Trabelsi, D.; Mohammed, S.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. An unsupervised approach for automatic activity recognition based on hidden Markov model regression. IEEE Trans. Autom. Sci. Eng. 2013, 10, 829-835. [CrossRef]
- Foerster, F.; Smeja, M.; Fahrenberg, J. Detection of posture and motion by accelerometry: A validation study in ambulatory monitoring. Comput. Hum. Behav. 1999, 15, 571-583. [CrossRef]
- Foerster, F.; Fahrenberg, J. Motion pattern and posture: Correctly assessed by calibrated accelerometers. Behav. Res. Method. Instrum. Comput. 2000, 32, 450-457. [CrossRef]
- Zhang, T.; Wang, J.; Xu, L.; Liu, P. Using Wearable Sensor and NMF Algorithm to Realize Ambulatory Fall Detection. In Advances in Natural Computation; Springer: Berlin, Germany, 2006; pp. 488-491.
- Scholkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2001.
- Cover, T.M. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Comput. 1965, EC-14, 326-334. [CrossRef]
- Huynh, T.; Schiele, B. Towards less supervision in activity recognition from wearable sensors. In Proceedings of the 2006 10th IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11-14 October 2006; pp. 3-10.
- Krause, A.; Ihmig, M.; Rankin, E.; Leong, D.; Gupta, S.; Siewiorek, D.; Smailagic, A.; Deisher, M.; Sengupta, U. Trading off prediction accuracy and power consumption for context-aware wearable computing. In Proceedings of the 2005 Ninth IEEE International Symposium on Wearable Computers, Osaka, Japan, 18-21 October 2005; pp. 20-26.
- Doukas, C.; Maglogiannis, I. Advanced patient or elder fall detection based on movement and sound data. In Proceedings of the 2008 Second International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth, Tampere, Filand, 30 January-1 February 2008; pp. 103-107.
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC press: Boca Raton, FL, USA, 1984.
- Bedogni, L.; Di Felice, M.; Bononi, L. By train or by car? Detecting the user's motion type through smartphone sensors data. In Proceedings of the 2012 IFIP Wireless Days (WD), Dublin, Ireland, 21-23 November 2012; pp. 1-6.
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Ser. B (Methodol.) 1977, 39, 1-38.
- Mannini, A.; Sabatini, A.M. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 2010, 10, 1154-1175. [CrossRef] [PubMed]
- Ong, W.-H.; Koseki, T.; Palafox, L. An Unsupervised Approach for Human Activity Detection and Recognition. Int. J. Simul. Syst. Sci. Technol. 2013, 14. [CrossRef]
- Cottone, P.; Re, G.L.; Maida, G.; Morana, M. Motion sensors for activity recognition in an ambient-intelligence scenario. In Proceedings of the 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), San Diego, CA, USA, 18-22 March 2013; pp. 646-651.
- Forney, G.D., Jr. The viterbi algorithm. IEEE Proc. 1973, 61, 268-278. [CrossRef]
- Lester, J.; Choudhury, T.; Kern, N.; Borriello, G.; Hannaford, B. A Hybrid Discriminative/ Generative Approach for Modeling Human Activities. In Proceedings of the IJCAI'05 19th international joint conference on Artificial intelligence, Edinburgh, UK, 30 July-5 August 2005; pp. 766-772.
- Laerhoven, K.V.; Gellersen, H.-W.; Malliaris, Y.G. Long term activity monitoring with a wearable sensor node. In Proceedings of the 2006 BSN 2006 International Workshop on Wearable and Implantable Body Sensor Networks, Cambridge, MA, USA, 3-5 April 2006.
- Lukowicz, P.; Ward, J.A.; Junker, H.; Stäger, M.; Tröster, G.; Atrash, A.; Starner, T. Recognizing Workshop Activity Using Body Worn Microphones and Accelerometers. In Pervasive Computing; Springer: Berlin, Germany, 2004; pp. 18-32.
- Ward, J.A.; Lukowicz, P.; Troster, G.; Starner, T.E. Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Trans. Pattern Anal. Mach. Intel. 2006, 28, 1553-1567. [CrossRef] [PubMed]
- Hidden markov model (hmm) toolbox for matlab. Available online: http://www ai mit edu/~murphyk/ Software/HMM/hmm html (accessed on 9 December 2015).
- Boyle, J.; Karunanithi, M.; Wark, T.; Chan, W.; Colavitti, C. Quantifying functional mobility progress for chronic disease management. In Proceedings of the 2006 28th Annual International Conference of the Engineering in Medicine and Biology Society (EMBS'06), New York, NY, USA, 30 August-3 September 2006; pp. 5916-5919.
- Culhane, K.; Lyons, G.; Hilton, D.; Grace, P.; Lyons, D. Long-term mobility monitoring of older adults using accelerometers in a clinical environment. Clin. Rehabil. 2004, 18, 335-343. [CrossRef] [PubMed]
- Najafi, B.; Aminian, K.; Loew, F.; Blanc, Y.; Robert, P.A. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans. Biomed. Eng. 2002, 49, 843-851. [CrossRef] [PubMed]
- Bourke, A.; O'donovan, K.; Olaighin, G. The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls. Med. Eng. Phys. 2008, 30, 937-946. [CrossRef] [PubMed]
- Marin-Perianu, M.; Lombriser, C.; Amft, O.; Havinga, P.; Tröster, G. Distributed Activity Recognition with Fuzzy-Enabled Wireless Sensor Networks. In Distributed Computing in Sensor Systems; Springer: Berlin, Germany, 2008; pp. 296-313.
- McClelland, J.L.; Rumelhart, D.E.; Group, P.R. Parallel Distributed Processing: Explorations in the Microstructures of Cognition; MIT Press: Cambridge, MA, USA, 1986; Volume 2.
- Maurer, U.; Rowe, A.; Smailagic, A.; Siewiorek, D. Location and Activity Recognition Using eWatch: A Wearable Sensor Platform. In Ambient Intelligence in Everyday Life; Springer: Berlin, Germany, 2006; pp. 86-102.
- Ravi, N.; Dandekar, N.; Mysore, P.; Littman, M.L. Activity recognition from accelerometer data. In Proceedings of the IAAI'05 17th conference on Innovative applications of artificial intelligence, Pittsburgh, MA, USA, 9-13 July 2005; pp. 1541-1546.
- Fahrenberg, J.; Muller, W.; Foerster, F.; Smeja, M. A multi-channel investigation of physical activity. J. Psychophysiol. 1996, 10, 209-217.
- Lee, S.; Park, H.; Hong, S.; Lee, K.; Kim, Y. A study on the activity classification using a triaxial accelerometer. In Proceedings of the 25th Annual International Conference of the Engineering in Medicine and Biology Society, Cancun, Mexico, 17-21 September 2003; pp. 2941-2943.
- Ermes, M.; Parkka, J.; Mantyjarvi, J.; Korhonen, I. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 20-26. [CrossRef] [PubMed]
- Liu, K.; Liu, T.; Shibata, K.; Inoue, Y. Ambulatory measurement and analysis of the lower limb 3D posture using wearable sensor system. In Proceedings of the 2009 ICMA International Conference on Mechatronics and Automation, Changchun, China, 9-12 August 2009; pp. 3065-3069.
- Favre, J.; Luthi, F.; Jolles, B.; Siegrist, O.; Najafi, B.; Aminian, K. A new ambulatory system for comparative evaluation of the three-dimensional knee kinematics, applied to anterior cruciate ligament injuries. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 592-604. [CrossRef] [PubMed]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intel. Syst. Technol. (TIST) 2011, 2. [CrossRef]