Combined high-precision ∆48 and ∆47 analysis of carbonates
2019, Chemical Geology
https://doi.org/10.1016/J.CHEMGEO.2019.05.019Abstract
High-precision analysis of the excess abundance (relative to the stochastic distribution) of mass 48 isotopologues in CO 2 evolved from acid digestion of carbonates (Δ 48) has not been possible until recently due to the relatively low natural abundance of 18 O. Here we show that the 253 Plus™ gas source mass spectrometer equipped with Faraday cups and 10 13 Ω resistors can perform combined Δ 47 and Δ 48 analyses on carbonates with external reproducibilities (1SD) of 0.010 ‰ and 0.030 ‰, respectively. 10 mg aliquots of five carbonate reference materials (ETH 1, ETH 2, ETH 3, ETH 4, and Carrara) are digested with phosphoric acid at 90°C using a common acid bath. The evolved CO 2 is purified using an automated gas preparation system (including cryotraps and a GC) and analyzed for its Δ 47 and Δ 48 compositions using the dual inlet system of a 253 Plus™ gas source mass spectrometer. Raw Δ 47 and Δ 48 values are finally normalized to the Carbon Dioxide Equilibrium Scale (CDES). In Δ 47 , CDES 90°C vs. Δ 48 , CDES 90°C space, calcite reference materials Carrara, ETH 3 and ETH 4 agree with the equilibrium curve for calcite after adding semi-empirically determined 90°C acid fractionation factors of 0.196 ‰ (for Δ 47) and 0.136 ‰ (for Δ 48) to theoretical Δ 63 and Δ 64 data. Agreement between measured and theoretically expected Δ 48 , CDES 90°C highlights the accuracy of our high-precision clumped isotope analytical setup. Combined analysis of the abundances of mass 47 and mass 48 isotopologues in CO 2 evolved from acid digestion of natural carbonates has excellent potential for the determination of accurate and highly precise paleotemperatures as well as for the identification of rate-limiting kinetic processes involved in biomineralization. A formation temperature of 15(± 2)°C is obtained on the 95 % confidence level for the Upper Cretaceous chalk sample ETH 3. unique temperature dependence of the acid fractionation factor (Petersen et al., 2019). However, even for these reprocessed calibrations the absolute spread in Δ 47 at a given temperature remains as large
References (27)
- Bajnai, D., Fiebig, J., Tomašových, A., Milner Garcia, S., Rollion-Bard, C., Raddatz, J., Löffler, N., Primo-Ramos, C., Brand, U., 2018. Assessing kinetic fractionation in brachiopod calcite using clumped isotopes. Sci. Rep. 8 (1), 1-12. https://doi.org/10. 1038/s41598-017-17353-7.
- Bernasconi, S.M., Hu, B., Wacker, U., Fiebig, J., Breitenbach, S.F., Rutz, T., 2013. Background effects on Faraday collectors in gas-source mass spectrometry and im- plications for clumped isotope measurements. Rapid Commun. Mass Spectrom. 27 (5), 603-612. https://doi.org/10.1002/rcm.6490.
- Bernasconi, S.M., Müller, I.A., Bergmann, K.D., Breitenbach, S.F.M., Fernandez, A., Hodell, D.A., Jaggi, M., Meckler, A.N., Millan, I., Ziegler, M., 2018. Reducing un- certainties in carbonate clumped isotope analysis through consistent carbonate-based standardization. Geochem. Geophys. Geosyst. 19 (9), 2895-2914. https://doi.org/10. 1029/2017gc007385.
- Bristow, T.F., Bonifacie, M., Derkowski, A., Eiler, J.M., Grotzinger, J.P., 2011. A hydro- thermal origin for isotopically anomalous cap dolostone cements from south China. Nature 474, 68-71. https://doi.org/10.1038/nature10096.
- Daëron, M., Blamart, D., Peral, M., Affek, H.P., 2016. Absolute isotopic abundance ratios and the accuracy of Δ 47 measurements. Chem. Geol. 442, 83-96. https://doi.org/10. 1016/j.chemgeo.2016.08.014.
- Daëron, M., Drysdale, R.N., Peral, M., Huyghe, D., Blamart, D., Coplen, T.B., Lartaud, F., Zanchetta, G., 2019. Most Earth-surface calcites precipitate out of isotopic equili- brium. Nat. Commun. 10 (429), 1-7. https://doi.org/10.1038/s41467-019-08336-5.
- Dennis, K.J., Schrag, D.P., 2010. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochim. Cosmochim. Acta 74 (14), 4110-4122. https://doi.org/10.1016/j.gca.2010.04.005.
- Dennis, K.J., Affek, H.P., Passey, B.H., Schrag, D.P., Eiler, J.M., 2011. Defining an ab- solute reference frame for 'clumped' isotope studies of CO 2 . Geochim. Cosmochim. Acta 75 (22), 7117-7131. https://doi.org/10.1016/j.gca.2011.09.025.
- Eagle, R.A., Tütken, T., Martin, T.S., Tripati, A.K., Fricke, H.C., Connely, M., Cifelli, R.L., Eiler, J.M., 2011. Dinosaur body temperatures determined from isotopic ( 13 C-18 O) ordering in fossil biominerals. Science 333 (6041), 443-445. https://doi.org/10. 1126/science.1206196.
- Eiler, J.M., 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quat. Sci. Rev. 30 (25-26), 3575-3588. https://doi.org/10.1016/j. quascirev.2011.09.001.
- Fernandez, A., Müller, I.A., Rodríguez-Sanz, L., van Dijk, J., Looser, N., Bernasconi, S.M., 2017. A reassessment of the precision of carbonate clumped isotope measurements: implications for calibrations and paleoclimate reconstructions. Geochem. Geophys. Geosyst. 18, 1-12. https://doi.org/10.1002/2017gc007106.
- Fiebig, J., Hofmann, S., Löffler, N., Lüdecke, T., Methner, K., Wacker, U., 2016. Slight pressure imbalances can affect accuracy and precision of dual inlet-based clumped isotope analysis. Isot. Environ. Health Stud. 52 (1-2), 12-28. https://doi.org/10. 1080/10256016.2015.1010531.
- Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E.A., Schrag, D., Eiler, J.M., 2006. 13 C-18 O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta 70 (6), 1439-1456. https://doi.org/10.1016/j.gca.2005. 11.014.
- Guo, W., Zhou, C., 2019. Δ 48 fractionation in carbonates and its implications for clumped isotope thermometry. In: Paper Presented at the 7th International Clumped Isotope Workshop, Queen Mary, Long Beach, CA, USA.
- He, B., Olack, G.A., Colman, A.S., 2012. Pressure baseline correction and high-precision CO 2 clumped-isotope (Δ 47 ) measurements in bellows and micro-volume modes. Rapid Commun. Mass Spectrom. 26 (24), 2837-2853. https://doi.org/10.1002/rcm.6436.
- Hill, P.S., Tripati, A.K., Schauble, E.A., 2014. Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate minerals. Geochim. Cosmochim. Acta 125, 610-652. https://doi.org/10.1016/j.gca.2013.06.018.
- Huntington, K.W., Eiler, J.M., Affek, H.P., Guo, W., Bonifacie, M., Yeung, L.Y., Thiagarajan, N., Passey, B., Tripati, A., Daeron, M., Came, R., 2009. Methods and limitations of 'clumped' CO 2 isotope (Δ 47 ) analysis by gas-source isotope ratio mass spectrometry. J. Mass Spectrom. 44 (9), 1318-1329. https://doi.org/10.1002/jms. 1614.
- Huntington, K.W., Budd, D.A., Wernicke, B.W., Eiler, J.M., 2011. Use of clumped isotope thermometry to constrain the crystallization temperature of diagenetic calcite. J. Sediment. Res. 81, 656-669. https://doi.org/10.2110/jsr.2011.51.
- John, C.M., Bowen, D., 2016. Community software for challenging isotope analysis: first applications of 'Easotope' to clumped isotopes. Rapid Commun. Mass Spectrom. 30 (21), 2285-2300. https://doi.org/10.1002/rcm.7720.
- Meckler, A.N., Ziegler, M., Millan, M.I., Breitenbach, S.F., Bernasconi, S.M., 2014. Long- term performance of the KIEL Carbonate Device with a new correction scheme for clumped isotope measurements. Rapid Commun. Mass Spectrom. 28 (15), 1705-1715. https://doi.org/10.1002/rcm.6949.
- Merrit, D.A., Hayes, J.M., 1994. Factors controlling precision and accuracy in isotope- ratio-monitoring mass spectrometry. Anal. Chem. 66, 2336-2347. https://doi.org/ 10.1021/ac00086a020.
- Methner, K., Mulch, A., Fiebig, J., Wacker, U., Gerdes, A., Graham, S.A., Chamberlain, C.P., 2016. Rapid Middle Eocene temperature change in western North America. Earth Planet. Sci. Lett. 450, 132-139. https://doi.org/10.1016/j.epsl.2016.05.053.
- Passey, B.H., Henkes, G.A., 2012. Carbonate clumped isotope bond reordering and geospeedometry. Earth Planet. Sci. Lett. 351-352, 223-236. https://doi.org/10. 1016/j.epsl.2012.07.021.
- Petersen, S.V., Defliese, W.F., Saenger, C., Daëron, M., Huntington, K.W., John, C.M., Kelson, J.R., Coleman, A.S., Kluge, T., Olack, G.A., Schauer, A.J., Bajnai, D., Bonifacie, M., Breitenbach, S.F., Fiebig, J., Fernandez, A.B., Henkes, G.A., Hodell, D., Katz, A., Kele, S., Lohmann, K.C., Passey, B.H., Peral, M.Y., Petrizzo, D.A., Rosenheim, B.E., Tripati, A., Venturelli, R., Young, E.D., Winkelstern, I.Z., 2019. Effects of improved 17 O correction on inter-laboratory agreement in clumped isotope calibrations, estimates of mineral-specific offsets, and acid fractionation factor tem- perature dependence. Geochem. Geophys. Geosyst. https://doi.org/10.1029/ 2018GC008127. (in press).
- Schauer, A.J., Kelson, J., Saenger, C., Huntington, K.W., 2016. Choice of 17 O correction affects clumped isotope (Δ 47 ) values of CO 2 measured with mass spectrometry. Rapid Commun. Mass Spectrom. 30 (24), 2607-2616. https://doi.org/10.1002/rcm.7743.
- Wang, Z., Schauble, E.A., Eiler, J.M., 2004. Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochim. Cosmochim. Acta 68 (23), 4779-4797. https://doi.org/10.1016/j.gca.2004.05.039.
- Wierzbowski, H., Bajnai, D., Wacker, U., Rogov, M.A., Fiebig, J., Tesakova, E.M., 2018. Clumped isotope record of salinity variations in the Subboreal Province at the mid- dle-late Jurassic transition. Glob. Planet. Chang. 167, 172-189. https://doi.org/10. 1016/j.gloplacha.2018.05.014.