Academia.eduAcademia.edu

Outline

Counting Subwords in Circular Words and Their Parikh Matrices

2021, arXiv (Cornell University)

Abstract

The word inference problem is to determine languages such that the information on the number of occurrences of those subwords in the language can uniquely identify a word. A considerable amount of work has been done on this problem, but the same cannot be said for circular words despite growing interests on the latter due to their applications-for example, in splicing systems. Meanwhile, Parikh matrices are useful tools and well established in the study of subword occurrences. In this work, we propose two ways of counting subword occurrences in circular words. We then extend the idea of Parikh matrices to the context of circular words and investigate this extension. Motivated by the word inference problem, we study ambiguity in the identification of a circular word by its Parikh matrix. Accordingly, two rewriting rules are developed to generate ternary circular words which share the same Parikh matrix.

References (33)

  1. A. Atanasiu, R. Atanasiu, and I. Petre. Parikh matrices and amiable words. Theoret. Com- put. Sci., 390(1):102-109, 2008.
  2. A. Atanasiu, G. Poovanandran, and W. C. Teh. Parikh determinants. In Combinatorics on words, volume 11682 of Lecture Notes in Comput. Sci., pages 68-79. Springer, Cham, 2019.
  3. A. Atanasiu, G. Poovanandran, and W. C. Teh. Parikh matrices for powers of words. Acta Inform., 56(6):521-535, 2019.
  4. P. Bonizzoni, C. De Felice, G. Mauri, and R. Zizza. On the power of circular splicing. Discrete Appl. Math., 150(1-3):51-66, 2005.
  5. P. Bonizzoni, C. De Felice, and R. Zizza. A characterization of (regular) circular languages generated by monotone complete splicing systems. Theoret. Comput. Sci., 411(48):4149- 4161, 2010.
  6. J. D. Currie and D. S. Fitzpatrick. Circular words avoiding patterns. In Developments in language theory, volume 2450 of Lecture Notes in Comput. Sci., pages 319-325. Springer, Berlin, 2003.
  7. J. D. Day, P. Fleischmann, F. Manea, and D. Nowotka. k-spectra of weakly-c-balanced words. In Developments in language theory, volume 11647 of Lecture Notes in Comput. Sci., pages 265-277. Springer, Cham, 2019.
  8. J. Dick, L. K. Hutchinson, R. Mercaş, and D. Reidenbach. Reducing the ambiguity of parikh matrices. Theoret. Comput. Sci., 860:23-40, 2021.
  9. M. Dudık and L. J. Schulman. Reconstruction from subsequences. J. Comp. Theory A, 103(2):337-348, 2003.
  10. D. S. Fitzpatrick. There are binary circular cube-free words of length n contained within the Thue-Morse word for all positive integers n. Ars Combin., 74:323-329, 2005.
  11. D. R. Helinski and D. B. Clewell. Circular DNA. Annu. Rev. Biochem., 40(1):899-942, 1971.
  12. K. Mahalingam and K. G. Subramanian. Product of Parikh matrices and commutativity. Internat. J. Found. Comput. Sci., 23(1):207-223, 2012.
  13. B. Manvel, M. Aaron, S. Allen, S. Ken, and S. Paul. Reconstruction of sequences. Discrete Math., 94(3):209-219, 1991.
  14. A. Mateescu. Algebraic aspects of Parikh matrices. In Theory is forever, volume 3113 of Lecture Notes in Comput. Sci., pages 170-180. Springer, Berlin, 2004.
  15. A. Mateescu, A. Salomaa, K. Salomaa, and S. Yu. A sharpening of the Parikh mapping. Theor. Inform. Appl., 35(6):551-564, 2001.
  16. A. Mateescu, A. Salomaa, and S. Yu. Subword histories and Parikh matrices. J. Comput. System Sci., 68(1):1-21, 2004.
  17. J. Maňuch. Characterization of a word by its subwords. In Developments in language theory (Aachen, 1999), pages 210-219. World Sci. Publ., River Edge, NJ, 2000.
  18. G. Poovanandran and W. C. Teh. Elementary matrix equivalence and core transformation graphs for Parikh matrices. Discrete Appl. Math., 251:276-289, 2018.
  19. G. Poovanandran and W. C. Teh. M -ambiguity sequences for Parikh matrices and their periodicity revisited. Bull. Malays. Math. Sci. Soc., 43:3305-3321, 2020.
  20. M. Rigo. Relations on words. Indag. Math. (N.S.), 28(1):183-204, 2017.
  21. A. Saarela. Separating many words by counting occurrences of factors. In Developments in language theory, volume 11647 of Lecture Notes in Comput. Sci., pages 251-264. Springer, Cham, 2019.
  22. A. Salomaa. Independence of certain quantities indicating subword occurrences. Theoret. Comput. Sci., 362(1):222-231, 2006.
  23. A. Salomaa. Criteria for the matrix equivalence of words. Theoret. Comput. Sci., 411(16):1818-1827, 2010.
  24. V. N. S ¸erbȃnut ¸ȃ. On Parikh matrices, ambiguity, and prints. Internat. J. Found. Comput. Sci., 20(1):151-165, 2009.
  25. V. N. S ¸erbȃnut ¸ȃ and T. F. S ¸erbȃnut ¸ȃ. Injectivity of the Parikh matrix mappings revisited. Fund. Inform., 73(1):265-283, 2006.
  26. A. M. Shur. On ternary square-free circular words. Electron. J. Combin., 17(1):Research Paper 140, 11, 2010.
  27. J. Simpson. Palindromes in circular words. Theoret. Comput. Sci., 550:66-78, 2014.
  28. J. Simpson. Short witnesses for Parikh-friendly permutations. Australas. J. Combin., 78:329-334, 2020.
  29. R. Siromoney, K. G. Subramanian, and V. R. Dare. Circular DNA and splicing systems. In Parallel image analysis (Ube, 1992), volume 654 of Lecture Notes in Comput. Sci., pages 260-273. Springer, Berlin, 1992.
  30. K. G. Subramanian, K. Mahalingam, R. Abdullah, and A. K. Nagar. Two-dimensional digitized picture arrays and Parikh matrices. Internat. J. Found. Comput. Sci., 24(3):393- 408, 2013.
  31. W. C. Teh and A. Atanasiu. On a conjecture about Parikh matrices. Theoret. Comput. Sci., 628:30-39, 2016.
  32. W. C. Teh, A. Atanasiu, and G. Poovanandran. On strongly M-unambiguous prints and S ¸erbȃnut ¸ȃ's conjecture for Parikh matrices. Theoret. Comput. Sci., 719:86-93, 2018.
  33. W. C. Teh, Z. C. Ng, M. Javaid, and Z. J. Chern. Parikh word representability of bipartite permutation graphs. Discrete Appl. Math., 282:208-221, 2020.