Academia.eduAcademia.edu

Outline

Allocation of limited resources under quadratic constraints

Annals of Operations Research

https://doi.org/10.1007/S10479-022-05114-3

Abstract

The proper allocation/distribution of limited resources is a traditional problem with various applications. The mathematical formulation of such problems usually includes constraints describing the set of feasible solutions (feasible set), from which the (nearly) optimal or equilibrium solution should be selected. Often the feasible set is more difficult to determine than to find the optimal or equilibrium solution. Alternatively, the already known feasible set often makes it easier to select the optimal or equilibrium solution. In some other cases, any feasible solutions are the same satisfactory, additional optimization is needless. Accordingly, the main or only task in many cases is to determine the feasible set itself. In the paper, a new theorem is proved for the explicit expression of properly assigned (dependent) variables by means of the other (independent) variables in a system of inequality and quadratic equality constraints. The sum of the (nonnegative) variables can be e...

References (28)

  1. Bouajaja, S., & Dridi, N. (2017). A survey on human resource allocation problem and its applications. Oper- ational Research, 17(2), 339-369.
  2. Csendes, T., Zabinsky, Z. B., & Kristinsdottir, B. P. (1995). Constructing large feasible suboptimal intervals for constrained nonlinear optimization. Annals of Operations Research, 58, 279-293.
  3. Etter, D. M., Kuncicky, D., & Moore, H. (2004). Introduction to MATLAB 7. Springer.
  4. Forgó, F., Szép, J., & Szidarovszky, F. (1999). Introduction to the theory of games: Concepts, methods, applications. Kluwer Academic Publishers.
  5. Friedkin, N. E., Proskurnikov, A. V., Mei, W., & Bullo, F. (2019). Mathematical structures in group decision- making on resource allocation distributions. Scientific Reports, 9, 1377. https://doi.org/10.1038/s41598- 018-37847-2 GEOSZ (2014). http://geosz.hu/index.php/informaciok/hirek-aktualitasok/item/94-megkezdte-a-f%C5% B1t%C3%A9st-az-%C3%BAjszegedi-geotermikus-kaszk%C3%A1drendszer (Accessed April 2021)
  6. Goel, T., Stander, N., & Lin, Y.-Y. (2010). Efficient resource allocation for genetic algorithm based multi- objective optimization with 1,000 simulations. Structural Multidisciplinary Optimization, 41, 421-432.
  7. Kicsiny, R. (2017). Solution for a class of closed-loop leader-follower games with convexity conditions on the payoffs. Annals of Operations Research, 253, 405-429.
  8. Kicsiny, R., Piscopo, V., Scarelli, A., & Varga, Z. (2021). Game-theoretical model for the sustainable use of thermal water resources: The case of Ischia volcanic island (Italy). Environmental Geochemistry and Health (in Press). https://doi.org/10.1007/s10653-021-00871-9
  9. Kicsiny, R., & Varga, Z. (2019). Differential game model with discretized solution for the use of limited water resources. Journal of Hydrology, 569, 637-646.
  10. Klein, R. S., Luss, H., & Rothblum, U. G. (1994). Relaxation-based algorithms for minimax optimization problems with resource allocation applications. Mathematical Programming, 64, 337-363.
  11. Kranich, L. (2020). Resource-envy-free and efficient allocations: A new solution for production economies with dedicated factors. Journal of Mathematical Economics, 89, 1-7.
  12. Kwieciński, Z., Kwiecińska, H., Ratajszczak, R., Ćwiertnia, P., & Tryjanowski, P. (2006). Digestive efficiency in captive white storks Ciconia ciconia. In: Tryjanowski, P., Sparks, T.H., & Jerzak, L. (eds.) (2006). White stork study in Poland: biology, ecology and conservation. Bogucki Wydawnictwo Naukowe, Poznań Liu, X., Di, X., Li, J., Wang, H., Zhao, J., Yang, H., Cong, L., & Jiang, Y. (2019). Allocating limited resources to protect a massive number of targets using a game theoretic model. Mathematical Problems in Engineering. https://doi.org/10.1155/2019/5475341
  13. Madani, K. (2010). Game theory and water resources. Journal of Hydrology, 381, 225-238.
  14. Makra, L., Matyasovszky, I., Hufnagel, L., & Tusnády, G. (2015). The history of ragweed in the World. Applied Ecology and Environmental Research, 13(2), 489-512.
  15. Milano, M., & Lombardi, M. (2014). Strategic decision making on complex systems. Constraints, 19, 174-185.
  16. Moritzi, M., Maumary, L., Schmid, D., Steiner, I., Vallotton, L., Spaar, R., & Biber, O. (2001). Time budget, habitat use and breeding success of white storks (Ciconia ciconia) under variable foraging conditions during the breeding season in Switzerland. Ardea, 89(3), 457-470.
  17. Nagygál, J., & Tóth, L. (2017). The sustainability and usage efficiency of convectional geothermic energy production. Hungarian Agricultural Engineering, 31, 21-37.
  18. Nattaf, M., Artigues, C., & Lopez, P. (2015). A hybrid exact method for a scheduling problem with a continuous resource and energy constraints. Constraints, 20, 304-324.
  19. Patriksson, M. (2008). A survey on the continuous nonlinear resource allocation problem. European Journal of Operational Research, 185(1), 1-46.
  20. Pinke, Gy., & Pál, R. (2008). Phytosociological and conservational study of the arable weed communities in western Hungary. Plant Biosystems, 142(3), 491-508.
  21. Sharma, S., & Steuer, R. (2019). Modelling microbial communities using biochemical resource allocation analysis. Journal of the Royal Society Interface, 16, 20190474: https://doi.org/10.1098/rsif.2019.0474
  22. Tortosa, F. S., & Redondo, T. (1992). Motives for parental infanticide in white storks Ciconia ciconia. Ornis Scandinavica, 23(2), 185-189.
  23. Tóthmérész, B. (1995a). Comparison of different methods for diversity ordering. Journal of Vegetation Science, 6, 283-290.
  24. Tóthmérész, B. (1995b). Density dependent and density independent representation of indirect spatial series analysis. Acta Botanica Hungarica, 39, 43-50.
  25. Vergara, P., Aguirre, J. I., Fargallo, J. A., & Dávila, J. A. (2006). Nest-site fidelity and breeding success in white stork Ciconia ciconia. Ibis, 148(4), 672-677.
  26. Wang, B. C., Qian, Q. Y., Gao, J. J., Tan, Z. Y., & Zhou, Y. (2021). The optimization of warehouse location and resources distribution for emergency rescue under uncertainty. Advanced Engineering Informatics, 48, 101278.
  27. Xu, X., Lin, Z., & Zhu, J. (2020). DVRP with limited supply and variable neighborhood region in refined oil distribution. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03780-9
  28. Zelinka, I., Snasel, V., & Abraham, A. (2013). Handbook of optimization. Springer-Verlag, Berlin Heidelberg.