Academia.eduAcademia.edu

Outline

Maximum entropy principle and power-law tailed distributions

2009, The European Physical Journal B

https://doi.org/10.1140/EPJB/E2009-00161-0

Abstract

In generalized statistical mechanics the second link is customarily relaxed. Of course, the generalized exponential function defining the probability distribution function after inversion, produces a generalized logarithm Λ(pi). But, in general, the mean value of −Λ(pi) is not the entropy of the system. Here we reconsider the question first posed in [Phys. Rev. E 66, 056125 (2002) and 72, 036108 ], if and how is it possible to select generalized statistical theories in which the above mentioned twofold link between entropy and the distribution function continues to hold, such as in the case of ordinary statistical mechanics.

References (100)

  1. A.M. Mathai, A Handbook of generalized Special Func- tions for Statistical and Physical Sciences, Clarendon, Oxford (1993).
  2. A. Hasegawa, A.M. Kunioki, and M. Duong-van, Plasma Distribution Function in a Superthermal Radi- ation Field, Phys. Rev. Lett. 54, 2608 (1985).
  3. V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO1 and OGO3, J. Geophys. Res. 73, 2839 (1968).
  4. P.L. Biermann, and G. Sigl, Physics and Astrophysics of Ultra-Hight-Energy Cosmic Rays, Lectures Notes in Physics 576, Spring-Verlag Berlin (2001).
  5. G. Wilk and, Z. Wlodarczyk, Fluctuations of cross- sections seen in cosmic-ray data, Phys. Rev. D 50, 2318 (1994).
  6. D.B. Walton, and J. Rafelski, Equilibrium distribution of heavy quarks in Fokker-Planck dynamics, Phys. Rev. Lett. 84, 31 (2000).
  7. A. Ott, J.P. Bouchaud, D. Langevin, and W. Urbach, Anomalous diffusion in living polymers : a genuine Levy flight ?, Phys. Rev. Lett. 65, 2201 (1990).
  8. J.P. Bouchaud, and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep. 195, 127 (1990).
  9. M.F. Shlesinger, G.M. Zaslavsky, and J. Klafter, Strange kinetics, Nature 363, 31 (1993).
  10. T.H. Solomon, E.R. Weeks, and H. L. Swinney, Ob- servation of anomalous diffusion and Levy flights in a 2-dimensional rotating flow, Phys. Rev. Lett. 71, 3975 (1993).
  11. R. A. Antonia, N. Phan-Thien, and B.R. Satyoparakash, Autocorrelation and spectrum of dissipation fluctuations in a turbulent jet, Phys. Fluids 24, 554 (1981).
  12. B.M. Boghosian, Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics, Phys. Rev. E 53, 4754 (1996).
  13. K. Kasahara, Earthquake Mechanics, Cambridge Uni- versity Press, Cambridge (1981).
  14. M. Ausloos and K. Ivanova, Power-law correlations in the southern-oscillation-index fluctuations characteriz- ing El Nino, Phys. Rev. E 63, 047201 (2001).
  15. E.T. Lu and R.J. Hamilton, Avalanches and the dis- tribution of solar flares, Astrophysical Journal 380, 89 (1991).
  16. K.J. Niklas, Size-dependent variations in plant-growth rates and 3/4-power rules, Amer. J. Botany 81, 134 (1994).
  17. J.C. Nacher, T. Ochiai Power-law distribution of gene expression fluctuations, Phys. Lett. A 372, 6202 (2008).
  18. V. Plerou, P. Gopikrishnan, L.A. Nunes Amaral, Xavier Gabaix, and H. E. Stanley, Economic fluctuations and anomalous diffusion, Phys. Rev. E 62, R3023 (2000).
  19. X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stan- ley, A theory of power-law distributions in financial mar- ket fluctuations, Nature 423, 267 (2003).
  20. V. Pareto, Cours d'Economie Politique, Droz, Geneva (1896).
  21. A. Blank and S. Solomon, Power laws in cities popu- lation, financial markets and internet sites (scaling in systems with a variable number of components), Phys- ica A 287, 279 (2000).
  22. S. Miyazima, Y. Lee, T. Nagamine, and H. Miyajima, Power-law distribution of family names in Japanese so- cieties, Physica A 278, 282 (2000).
  23. H. Ebel, L.-I. Mielsch, and S. Bornholdt, Scale-free topology of e-mail networks, Phys. Rev. E 66, 035103 (2002).
  24. S. Wichmann, D. Stauer, F.W.S. Lima, et al., Modelling linguistic taxonomic dynamics, Transact. of the Phil. Society, 105, 126 (2007).
  25. K. Kosmidis, A. Kalampokis, P. Argyrakis, Statisti- cal mechanical approach to human language, Physica A 366, 495 (2006).
  26. Y.M. Choi, H.J. Kim, A directed network of Greek and Roman mythology, PHYSICA A 382, 665 (2007).
  27. D. C. Roberts and D. L. Turcotte, Fractality and self- organized criticality of wars, Fractals 6, 351 (1998).
  28. A. Clauset, M. Young, K.S. Gleditsch, On the frequency of severe terrorist events, J. of Conflict Resolution 51, 58 (2007).
  29. S. Redner, How popular is your paper? An empirical study of the citation distribution, Eur. Phys. J. B 4, 131 (1998).
  30. B. Tadic, S. Thurner and G.J. Rodger, Traffic on com- plex networks: Towards understanding global statistical properties from microscopic density fluctuations, Phys. Rev. E 69, 036102 (2004).
  31. M.E.J. Newman, Power laws, Pareto distributions and Zipf 's law, Contemporary Physics 46, 323 (2005).
  32. D. Sornette, Multiplicative processes and power laws, Phys. Rev. E 57, 4811 (1998).
  33. M.L. Goldstein, S.A. Morris, G.G. Yen, Problems with fitting to the power-law distribution, Eur. Phys. J. B 41, 255 (2004).
  34. G. Kaniadakis, G. Lapenta, Microscopic dynamics un- derlying anomalous diffusion, Phys. Rev. E 62, 3246 (2000).
  35. G. Kaniadakis, M. Lissia and A.M. Scarfone, Deformed logarithms and entropies, Physica A 340, 41 (2004).
  36. G. Kaniadakis, M. Lissia and A.M. Scarfone, Two- parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statis- tical mechanics, Phys. Rev. E 71, 046128 (2005).
  37. S. Abe, generalized entropy optimised by a given ar- bitrary distribution, J. Phys. A: Math. Gen. 36, 8733 (2003).
  38. T.D. Frank, Interpretation of Langrange multipliers of generalized maximum-entropy distributions, Phys. Lett. A E 299, 153 (2002).
  39. I. Csiszar, I-Divergence Geometry of Probability Distri- butions and Minimization Problems, Ann. Prob. 3, 146 (1975).
  40. S. Abe, Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies: A basis for q-exponential distributions, Phys. Rev E 66, 046134 (2002).
  41. B. Lesche, Instabilities of Renyi entropies, J. Stat. Phys. 27, 419 (1982).
  42. E.T. Jaynes, Information Theory and Statistical Me- chanics, Phys. Rev. 106, 620 (1957); 108, 171 (1957).
  43. T.S. Biro, G. Kaniadakis, Two generalizations of the Boltzmann equation, Eur. Phys. J. B 50, 3 (2006).
  44. G. Kaniadakis, P. Quarati, A set of stationary non- Maxwellian distributions, Physica A 192, 677 (1993).
  45. G. Kaniadakis, P. Quarati, Polynomial expansion of dif- fusion and drift coefficients for classical and quantum statistics, Physica A 237, 229 (1997).
  46. G. Kaniadakis, A. Lavagno, P. Quarati, Kinetic ap- proach to fractional exclusion statistics, Nucl. Phys. B 466, 527 (1996).
  47. G. Kaniadakis, A. Lavagno, P. Quarati, Kinetic model for q-deformed bosons and fermions, Phys. Lett. A 227, 227 (1997).
  48. V. Schwammle, E.M.F. Curado, F.D. Nobre, A general nonlinear Fokker-Planck equation and its associated en- tropy, Eur. Phys. J B 58, 159 (2007).
  49. P.-H. Chavanis, Genereralized Thermodynamics and ki- netic equations: Boltzmann, Landau, Kramers and Smoluchowski, Physica A 332, 89 (2004).
  50. T.D. Frank, Generalized multivariate Fokker-Planck equations derived from kinetic transport theory and lin- ear nonequilibrium thermodynamics, Phys. Lett. A E 305, 150 (2002).
  51. G. Kaniadakis, Non-linear kinetics underlying general- ized statistics, Physica A 296, 405 (2001).
  52. G. Kaniadakis, H-theorem and generalized entropies within the framework of nonlinear kinetics, Phys. Lett. A 288, 283 (2001).
  53. G. Kaniadakis, Statistical mechanics in the context of special relativity, Phys. Rev. E 66, 056125 (2002).
  54. G. Kaniadakis, Statistical mechanics in the context of special relativity II, Phys. Rev. E 72, 036108 (2005).
  55. R. Silva, The relativistic statistical theory and Kani- adakis entropy: an approach through a molecular chaos hypothesis, Eur. Phys. J. B 54, 499 (2006).
  56. R. Silva, The H-theorem in κ-statistics: influence on the molecular chaos hypothesis, Phys. Lett. A 352 17 (2006).
  57. T. Wada, Thermodynamic stabilities of the generalized Boltzmann entropies, Phisica A 340, 126 (2004).
  58. T. Wada, Thermodynamic stability conditions for non- additive composable entropies, Continuum Mechanics and Thermodynamics 16, 263 (2004).
  59. G. Kaniadakis, A.M. Scarfone, Lesche stability of κ- entropy, Physica A 340, 102 (2004).
  60. S. Abe, G. Kaniadakis and A.M. Scarfone, Stabilities of generalized entropy, J. Phys. A: Math. Gen. 37, 10513 (2004).
  61. J. Naudts, Deformed exponentials and logarithms in generalized thermostatistics, Physica A 316, 323 (2002).
  62. J. Naudts, Continuity of a class of entropies and relative entropies, Rev. Math. Phys. 16, 809 (2004).
  63. A.M. Scarfone, T. Wada, Canonical partition func- tion for anomalous systems described by the κ-entropy, Progress of Theor. Phys. Suppl. 162 45 (2006).
  64. T. Yamano, On the laws of thermodynamics from the escort average and on the uniqueness of statistical fac- tors, Phys. Lett. A 308, 364 (2003).
  65. G. Pistone, κ-exponential models from the geometrical point of view, Eur. Phys. J. B 69, in press (2009).
  66. Guo Lina, Du Jiulin, and Liu Zhipeng The property of κ-deformed statistics for a relativistic gas in an electro- magnetic field: κ parameter and κ-distribution, Phys. Lett. A 367, 431-435 (2007).
  67. Guo Lina and Du Jiulin, The κ parameter and κ- distribution in κ-deformed statistics for the sysstems in an external field, Phys. Lett. A 362, 368-370 (2007).
  68. G. Lapenta, S. Markidis, A. Marocchino, and G. Kani- adakis, Relaxation of relativistic plasmas under the ef- fect of wave-particle interactions, Astrophysical Journal 666, 949-954 (2007).
  69. G. Lapenta, S. Markidis, G. Kaniadakis, Computer experiments on the relaxation of collisionless plasmas, Journal of Statistical Mechanics, P02024 (2009).
  70. A. Rossani and A.M. Scarfone, Generalized kinetic equa- tions for a system of interacting atoms and photons: Theory and Simulations, J. Phys. A 37, 4955 (2004).
  71. J.M. Silva, R. Silva, J.A.S. Lima, Conservative force fields in non-Gaussian statistics, Phys. Lett. A 372, 5754 (2008).
  72. J. C. Carvalho, R. Silva, J.D. do Nascimento jr., and J. R. De Medeiros, Power law statistics and stellar ro- tational velocities in the Pleiades, Europhysics Letters 84, 59001 (2008).
  73. J. C. Carvalho, J.D. do Nascimento jr., R. Silva, and J. R. De Medeiros, Non-gaussian statistics and stellar rotational velocities of main sequence field stars, Astro- physical Journal Letters 696, L48 (2009).
  74. A.M. Teweldeberhan, H.G. Miller, and R. Tegen, κ- deformed Statistics and the formation of a quark-gluon plasma, Int. J. Mod. Phys. E 12, 669 (2003).
  75. F.I.M. Pereira, R. Silva, J.S. Alcaniz, Non-gaussian statistics and the relativistic nuclear equation of state, arXiv:0902.2383
  76. T. Wada, A.M. Scarfone, Asymptotic solutions of a nonlinear diffusive equation in the framework of κ-generalized statistical mechanics, Eur. Phys. J. B 69, in press (2009).
  77. M. Coraddu, M. Lissia, R. Tonelli, Statistical descrip- tions of nonlinear systems at the onset of chaos, Physica A 365, 252 (2006).
  78. R. Tonelli, G Mezzorani, F. Meloni, M. Lissia, M. Coraddu. Entropy production and Pesin identity at the onset of chaos Prog. Theor. Phys. 115, 23 (2006).
  79. A. Celikoglu A, U. Tirnakli, Sensitivity function and entropy increase rates for z-logistic map family at the edge of chaos, Physica A 372, 238 (2006).
  80. A.I. Olemskoi, V.O. Kharchenko, V.N. Borisyuk, Mul- tifractal spectrum of phase space related to generalized thermostatistics, Physica A 387, 1895 (2008).
  81. A.Y. Abul-Magd, Nonextensive random-matrix theory based on Kaniadakis entropy, Phys. Lett. A 361, 450 (2007).
  82. A.Y. Abul-Magd, Nonextensive and superstatistical gen- eralizations of random-matrix theory, Eur. Phys. J. B 69, in press (2009).
  83. T. Wada, H. Suyari, κ-generalization of Gauss' law of error, Phys. Lett. A 348, 89 (2006).
  84. F. Topsoe, Entropy and equilibrium via games of com- plexity, Physica A 340 11 (2004).
  85. T. Wada, H. Suyari, A two-parameter generalization of Shannon-Khinchin axioms and the uniqueness teorem, Phys. Lett. A 368, 199 (2007).
  86. F. Clementi, M. Gallegati, G. Kaniadakis, κ-generalized statistics in personal income distribution, Eur. Phys. J. B 57, 187 (2007).
  87. F. Clementi, T. Di Matteo, M. Gallegati, G. Kaniadakis, The κ-generalized distribution: A new descriptive model for the size distribution of incomes, Physica A 387, 3201 (2008).
  88. F. Clementi, M. Gallegati, G. Kaniadakis, A κ- generalized statistical mechanics approach to income analysis, Journal of Statistical Mechanics, P02037 (2009).
  89. D. Rajaonarison, D. Bolduc, and H. Jayet,The K- deformed multinomial logit model, Econ. Lett. 86, 13-20 (2005).
  90. D. Rajaonarison, Deterministic heterogeneity in tastes and product differentiation in the K-logit model, Econ. Lett. 100, 396 (2008).
  91. L. Euler, De serie Lambertina plurimiscue eius in- signibus proprietatibus, Acta Academiae Scientiarum Petropolitanae 29-51 (1779: 1783), Sankt Peterburg; Leonardi Euleri Opera Omnia, Series Prima Opera Mathematica, Vol. IV, 350-369 (1921).
  92. Student (W.S. Gosset), The probable error of a mean, Biometrika 6, 1 (1908).
  93. I.W. Burr, Cumulative frequency functions, Ann. Math. Stat. 13, 215 (1942).
  94. J. Harvda and F. Charvat, Quantification method of classification processes. Concept of structural a-entropy, Kybernetica 3, 30 (1967).
  95. C. Tsallis, Possible generalization of BoltzmannGibbs statistics, J. Stat. Phys. 52, 479 (1988).
  96. C. Tsallis, What are the numbers that experiments pro- vide?, Quimica Nova 17, 468 (1994).
  97. S. Abe, A note on the q-deformation theoretic aspect of the generalized entropies in nonextensive physics, Phys. Lett. A 224, 326 (1997).
  98. D.P. Mittal, On some functional equations concerning entropy, directed divergence and inaccuracy, Metrika, 22, 35 (1975).
  99. B.D. Sharma, and I.J. Taneja, Entropy of type (α, β) and other generalized measures in information theory, Metrika 22, 205 (1975).
  100. E.P. Borges, and I. Roditi, A family of nonextensive entropies, Phys. Lett. A 246, 399 (1998).