Academia.eduAcademia.edu

Outline

Multiscale simulation of carbon nanotube devices

2009, Comptes Rendus Physique

https://doi.org/10.1016/J.CRHY.2009.05.004

Abstract

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

References (63)

  1. J.C. Charlier, X. Blase, S. Roche, Electronic and transport properties of carbon nanotubes, Rev. Mod. Phys. 79 (2007) 677.
  2. S.J. Tans, M.H. Devoret, R.J.A. Groeneveld, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature 393 (1998) 49.
  3. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, Ph. Avouris, Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett. 89 (2002) 106801.
  4. J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, Ph. Avouris, Field-modulated carrier transport in carbon nanotube transistors, Phys. Rev. Lett. 89 (2002) 126801.
  5. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Ballistic carbon nanotube field-effect transistors, Nature 424 (2003) 654.
  6. S. Auvray, et al., Carbon nanotube chemistry and assembly for electronic devices, C. R. Physique, in this issue.
  7. S.M. Bachilo, L. Balzano, J.E. Herrera, F. Pompeo, D.E. Resasco, R.B. Weisman, Narrow (n, m)-distribution of single walled carbon nan- otubes grown using a solid supported catalyst, J. Am. Chem. Soc. 125 (2003) 11186-11187.
  8. G.H. Jeong, A. Yamazaki, S. Susuki, H. Yoshimura, Y. Kobayashi, Y. Homma, Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution, J. Am. Chem. Soc. 127 (2005) 8238-8239.
  9. M. Lee, J. Im, B.Y. Lee, S. Myung, J. Kang, L. Huang, Y.-K. Kwon, S. Hong, Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires, Nature Nanotechnology 1 (2006) 66-71.
  10. M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnology 1 (2006) 60-65.
  11. G.H. Jeong, A. Yamazaki, S. Suzuki, H. Yoshimura, Y. Kobayashi, Y. Homma, Production of single-walled carbon nanotubes with narrow diameter distribution using iron nanoparticles derived from DNA-binding proteins from starved cells, Carbon 45 (2007) 978-983.
  12. H. Hongo, F. Nihey, Y. Ochiai, Horizontally directional single-wall carbon nanotubes grown by chemical vapor deposition with a local electric field, J. Appl. Phys. 101 (2007) 024325.
  13. Y. Lu, S. Bangsaruntip, X. Wang, L. Zhang, Y. Nishi, H. Dai, DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high K dielectrics for nanotube transistors with 60 mV/decade switching, J. Am. Chem. Soc. 128 (2006) 3518-3519.
  14. A. Raychowdhury, S. Mukhopadhyay, K. Roy, A circuit-compatible model of ballistic carbon nanotube field-effect transistors, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 23 (10) (2004) 1411-1420.
  15. C. Maneux, J. Goguet, S. Frégonèse, T. Zimmer, H. Cazin d'Honincthun, S. Galdin-Retailleau, Analysis of CNTFET physical compact model, in: Proc. IEEE Int. Conf. Design & Test of Integrated Sys. (DTIS) in Nanoscale Technology, 2006, pp. 40-45.
  16. S. Frégonèse, H. Cazin d'Honincthun, J. Goguet, C. Maneux, T. Zimmer, J.P. Bourgoin, P. Dollfus, S. Galdin-Retailleau, Computationally efficient physics-based compact CNTFET model for circuit design, IEEE Trans. Electron Devices 55 (6) (2008) 1317-1327.
  17. C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer-Verlag, Wien-New York, 1989.
  18. C. Jungemann, B. Meinerzhagen, Hierarchical Device Simulation: The Monte Carlo Perspective, Springer, Wien-New York, 2003.
  19. D. Querlioz, J. Saint-Martin, K. Huet, A. Bournel, V. Aubry-Fortuna, C. Chassat, S. Galdin-Retailleau, P. Dollfus, On the ability of the particle Monte Carlo technique to include quantum effects in nano-MOSFET simulation, IEEE Trans. Electron Devices 54 (2007) 2232-2242.
  20. G. Pennington, N. Goldsman, Semi-classical transport and phonon scattering of electrons in semiconducting carbon nanotubes, Phys. Rev. B 68 (2003) 045426.
  21. H. Cazin d'Honincthun, S. Galdin-Retailleau, J. Sée, P. Dollfus, Electron-phonon scattering and ballistic behaviour in semiconducting carbon nanotubes, Appl. Phys. Lett. 87 (2005) 172112.
  22. A. Verma, et al., Effects of radial breathing mode phonons on charge transport in semiconducting zigzag carbon nanotubes, Appl. Phys. Lett. 87 (2005) 123101;
  23. M. Machon, et al., Strength of radial breathing mode in single-walled carbon nanotubes, Phys. Rev. B 71 (2005) 035416.
  24. H. Nha Nguyen, H. Cazin d'Honincthun, C. Chapus, A. Bournel, S. Galdin-Retailleau, P. Dollfus, N. Locatelli, Monte Carlo modeling of Schottky contacts on semiconducting carbon nanotubes, in: Proc. SISPAD 2007, Vienna, Austria, Springer, 2007, pp. 313-316.
  25. S.O. Koswatta, S.H. Hasan, M.S. Lundstrom, M.P. Anantram, D.E. Nikonov, IEEE Trans. Electron Devices 54 (2007) 2339-2351.
  26. J. Chaste, L. Lechner, P. Morfin, G. Fève, T. Kontos, J.-M. Berroir, D.C. Glattli, H. Happy, P. Hakonen, B. Plaçais, Single carbon nanotube transistor at GHz frequency, Nano Lett. 8 (2008) 525-528.
  27. A. Le Louarn, F. Kapche, J.-M. Bethoux, H. Happy, G. Dambrine, V. Derycke, P. Chenevier, N. Izard, M.F. Goffman, J.-P. Bourgoin, Intrinsic current gain cutoff frequency of 30 GHz with carbone nanotube transistors, Appl. Phys. Lett. 90 (2007) 233108.
  28. C. Jacoboni, R. Brunetti, P. Bordone, A. Bertoni, Quantum transport and its simulation with the Wigner-function approach, Int. J. High Speed Electronics and Systems 11 (2001) 387-423.
  29. M. Nedjalkov, H. Kosina, S. Selberherr, C. Ringhofer, D.K. Ferry, Unified particle approach to Wigner-Boltzmann transport in small semi- conductor devices, Phys. Rev. B 70 (2004) 115319.
  30. D. Querlioz, P. Dollfus, V. Nam Do, A. Bournel, V. Lien Nguyen, An improved Wigner Monte-Carlo technique for the self-consistent simula- tion of RTDs, J. Comput. Electronics 5 (2006) 443-446.
  31. D. Querlioz, J. Saint-Martin, A. Bournel, P. Dollfus, Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconduc- tor nanodevices, Phys. Rev. B 78 (2008) 165306.
  32. R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Research and Development 1 (1957) 223.
  33. M. Büttiker, et al., Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31 (1985) 6207.
  34. C. Caroli, et al., Direct calculation of the tunneling current, J. Phys. C 4 (1971) 916.
  35. Y. Meir, N.S. Wingreen, Landauer formula for the current in an interacting electron region, Phys. Rev. Lett. 68 (1992) 2512.
  36. R. Lake, et al., Single and multiband modeling of quantum electron transport through layered semiconductor devices, J. Appl. Phys. 81 (1997) 7845.
  37. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, United Kingdom, 1995.
  38. S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, United Kingdom, 2005.
  39. M.P. López Sancho, J.M. López Sancho, J. Rubio, Quick iterative scheme for the calculation of transfer matrices: application to Mo(100), J. Phys. F: Met. Phys. 14 (1984) 1205.
  40. G. Grosso, S. Moroni, G. Pastori Parravicini, Electronic structure of the InAs-GaSb superlattice studied by the renormalization method, Phys. Rev. B 40 (1989) 12328.
  41. J. Guo, S. Datta, M. Lundstrom, A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors, IEEE Trans. Electron Devices 51 (2004) 172.
  42. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Density-functional method for very large systems with LCAO basis sets, Int. J. Quantum Chem. 65 (1997) 453-461.
  43. Ch. Adessi, S. Roche, X. Blase, Reduced backscattering in potassium-doped nanotubes:ab initio and semiempirical simulations, Phys. Rev. B 73 (2006) 125414.
  44. R. Avriller, S. Latil, F. Triozon, X. Blase, S. Roche, Chemical disorder strength in carbon nanotubes: Magnetic tuning of quantum transport regimes, Phys. Rev. B 74 (2006) 121406(R).
  45. R. Avriller, S. Roche, F. Triozon, X. Blase, S. Latil, Low dimensional quantum transport properties of chemically disordered carbon nanotubes: from weak to strong localization regimes, Mod. Phys. Lett. B 21 (2007) 1955.
  46. B. Biel, X. Blase, F. Triozon, S. Roche, Doping effects on charge transport in graphene nanoribbons, Phys. Rev. Lett. 102 (2009) 096803.
  47. M.V. Fernández-Serra, Ch. Adessi, X. Blase, Surface segregation and backscattering in doped silicon nanowires, Phys. Rev. Lett. 96 (2006) 166805.
  48. M.V. Fernández-Serra, Ch. Adessi, X. Blase, Conductance, surface traps and passivation in doped silicon nanowires, Nano Lett. 6 (2006) 2674-2678.
  49. X. Blase, M.V. Fernández-Serra, Preserved conductance in covalently functionalized silicon nanowires, Phys. Rev. Lett. 100 (2008) 046802.
  50. H.J. Choi, et al., Defects, quasibound states, and quantum conductance in metallic carbon nanotubes, Phys. Rev. Lett. 84 (2000) 2917.
  51. Y.-S. Lee, M.B. Nardelli, N. Marzari, Band structure and quantum conductance of nanostructures from maximally localized Wannier functions: the case of functionalized carbon nanotubes, Phys. Rev. Lett. 95 (2005) 076804.
  52. E.R. Margine, M.-L. Bocquet, X. Blase, Thermal stability of graphene and nanotubes covalent functionalization, Nano Lett. 8 (2008) 3315.
  53. Y.-S. Lee, N. Marzari, Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes, Phys. Rev. Lett. 97 (2006) 116801.
  54. C. Gómez-Navarro, et al., Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime, Nature Mater. 4 (2005) 534.
  55. A.R. Rocha, et al., Designing real nanotube-based gas sensors, Phys. Rev. Lett. 100 (2008) 176803.
  56. T. Markussen, et al., Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires, Phys. Rev. Lett. 99 (2007) 076803.
  57. A. López-Bezanilla, F. Triozon, S. Latil, X. Blase, S. Roche, Effect of the chemical functionalization on charge transport in carbon nanotubes at the mesoscopic scale, Nano Lett. 9 (2009) 940.
  58. W. Kim, A. Javey, R. Tu, J. Cao, Q. Wang, H. Dai, Electrical contact to carbon nanotubes down to 1 nm in diameter, Appl. Phys. Lett. 87 (2005) 173101;
  59. Z. Chen, et al., The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors, Nano Lett. 5 (2005) 1497.
  60. J.J. Palacios, P. Tarakeshwar, D.M. Kim, Metal contacts in carbon nanotube field-effect transistors: beyond the schottky paradigm, Phys. Rev. B 77 (2008) 113403.
  61. K. Odbadrakh, P. Pomorski, C. Roland, Ab initio band bending, metal-induced gap states, and schottky barriers of a carbon and a boron nitride nanotube device, Phys. Rev. B 73 (2006) 233402.
  62. R.G. Dandrea, C.B. Duke, Calculation of the Schottky barrier height at the Al/GaAs(001) heterojunction: Effect of interfacial atomic relax- ations, J. Vac. Sci. Technol. A 11 (1993) 848-853.
  63. F. Léonard, J. Tersoff, Role of Fermi-level pinning in nanotube Schottky diodes, Phys. Rev. Lett. 84 (2000) 4693-4696.