Academia.eduAcademia.edu

Outline

Lefschetz pencil structures for 2-calibrated manifolds

2004, Comptes Rendus Mathematique

https://doi.org/10.1016/J.CRMA.2004.05.018

Abstract

We prove that for closed 2-calibrated manifolds there always exist Lefschetz pencil structures. This generalizes similar results for symplectic and contact manifolds. To cite this article: A.

References (9)

  1. D. Auroux, Estimated transversality in symplectic geometry and projective maps, in: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Sci. Publishing, River Edge, NJ, 2001, pp. 1-30.
  2. B. Deroin, Laminations par variétés complexes, Thèse, École Normale Supérieure de Lyon, 2003.
  3. S.K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666-705.
  4. S.K. Donaldson, Lefschetz fibrations in symplectic geometry, J. Differential Geom. 53 (2) (1999) 205-236.
  5. E. Ghys, Laminations par surfaces de Riemann, in: Dynamique et géométrie complexes (Lyon, 1997), ix, xi, in: Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. 49-95.
  6. E. Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, in: Proceedings of the International Congress of Mathematicians, vol. II, Beijing, 2002, pp. 405-414.
  7. A. Ibort, D. Martínez-Torres, Approximately holomorphic geometry and estimated transversality on 2-calibrated manifolds, C. R. Acad. Sci. Paris, Ser. I. 338 (9) (2004) 709-712.
  8. D. Martínez-Torres, Geometries with topological character, Ph.D. Thesis, Universidad Carlos III de Madrid, 2003.
  9. F. Presas, Lefschetz type pencils on contact manifolds, Asian J. Math. 6 (2) (2002) 277-302.